

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

Remote Attestation for
Multi-Package Platforms
using Intel® SGX
Datacenter Attestation
Primitives (DCAP)

Rev 1.1

September, 2021

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

Remote Attestation for Multi-Package Platforms using Intel® SGX

Datacenter Attestation Primitives (DCAP)

© Intel Corporation

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - iii -

Table of Contents

1. Introduction ..4

1.1. Terminology ... 4

2. Overview ..8

2.1. SGX Multi-Package Attestation Components .. 8

2.1.1. Microcode .. 8

2.1.2. BIOS .. 8

2.1.3. Platform Software .. 9

2.1.4. Registration Authority Service .. 9

2.2. SGX Multi-Package States ... 10

2.2.1. Initial Platform Establishment (IPE) .. 11

2.2.2. Normal .. 11

2.2.2.1. Microcode Downgrade .. 11

2.2.2.2. Removing CPU Packages .. 11

2.2.2.3. Re-arranging CPU Packages .. 11

2.2.3. TCB Recovery (TR/TCB-R) ... 11

2.2.4. Add Package (Replace Package) ... 12

2.2.5. Retirement/Waterfall ... 12

2.3. UEFI Variables and Tboot ... 13

2.4. SGX Multi-Package Registration Modes .. 13

2.4.1. Direct Registration ... 14

2.4.2. Indirect Registration ... 14

2.4.2.1. Intel® SGX Provisioning Certification Service (Intel® PCS) .. 14

2.4.3. Registration Environments .. 15

2.4.3.1. Single-Stage Registration ... 15

2.4.3.2. Dual-Stage Registration .. 15

3. Multi-Package Registration Platform Software Tools .. 16

3.1. Multi-Package Registration Agent (MPA) ... 16

3.1.1. Platform Manifest Handling ... 17

3.1.2. Add Package Handling .. 17

3.1.3. Configuration .. 18

3.1.3.1. BIOS Registration Authority Service Configuration ... 19

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 2 -

3.1.4. Error Codes ... 20

3.2. PCK Cert ID Retrieval Tool ... 21

3.2.1. Platform Manifest Handling ... 22

3.2.2. Add Package Handling .. 22

3.2.3. Configuration .. 22

3.2.3.1. Outputting to a CSV File ... 23

3.2.3.2. Outputting to the Reference Provisioning Certification Caching Service (PCCS) . 23

3.2.3.3. Platform Identity Without Enclave Loading .. 23

3.3. Multi-Package Management Tool .. 24

3.3.1. Changing the Registration Authority Service .. 25

3.3.2. Handling Key Blobs .. 25

3.3.3. Registration Error Codes ... 25

3.3.4. SGX Status .. 27

4. Multi-Package Registration Libraries ... 28

4.1. SGX Multi-Package UEFI Variables Access Library ... 28

4.1.1. Initialize the Multi-Package UEFI Library (MP UEFI Library) ... 28

4.1.2. Retrieve the Registration Request Type ... 29

4.1.3. Retrieve the BIOS Registration Server Request ... 29

4.1.4. Provide to BIOS the Registration Server Response .. 30

4.1.5. Retrieve Platform Information from BIOS ... 31

4.1.6. Retrieve Registration Status .. 32

4.1.7. Set the Registration Status .. 32

4.1.8. Retrieve the Registration Service Configuration ... 33

4.1.9. Set the Registration Service Information ... 34

4.1.10. Exit the Multi-Package UEFI Library .. 35

4.2. SGX Multi-Package Registration Service Network Library (MP Network Library) ... 36

4.2.1. Initialize the Multi-Package Network Library .. 36

4.2.2. Send a Request to the Registration Server ... 37

4.2.3. Exit the Multi-Package Network Library .. 38

A. Data Structures ... 39

A.1. Common Data Structures ... 39

A.2. Multi-Package UEFI Library Data Structures .. 40

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 3 -

A.3. Multi-package Network Library Data Structures .. 41

B. BIOS Multi-Package UEFI Variables ... 42

B.1. SgxRegistrationConfiguration .. 42

B.1.1. Header .. 43

B.1.2. PubKey .. 43

B.1.3. SGX Registration Server ID .. 44

B.1.4. SGX Registration Server Info .. 44

B.2. SGX Registration Server Request .. 45

B.3. SGX Registration Server Response ... 46

B.4. SGX Registration Package Info ... 47

B.5. SGX Registration Status... 48

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 4 -

1. Introduction

Intel® SGX remote attestation on multi-package platforms requires SGX instructions to use platform
keys that are shared between CPU packages. These platform keys are generated in the field when a
platform is assembled and distributed to each CPU package on the platform. The BIOS stores the
platform keys for each CPU package that is encrypted by respective unique hardware key of each CPU
package. SGX attestation keys are certified with signing keys derived from the platform keys rather
than a unique hardware key of a SGX CPU package. This differs from a single package SGX platforms
where the attestation keys are certified with signing keys that are derived from unique hardware key
of the CPU package.

Because the platform keys are derived at platform assembly, the provisioning keys that are derived
from the platform keys are not recognized by the attestation infrastructure and they must be
registered. A registration authority service evaluates whether each CPU package on the platform is
a genuine SGX package in good standing using its database of hardware key certificates. Then the
registration authority service provides platform identity certificates to the attestation infrastructure.
Once when the platform is registered, it can perform remote attestation the same way the single
package SGX platforms perform remote attestation is described in other Intel® SGX Data Center
Attestation Primitive (DCAP) documentation.

This document provides information on the released Intel® SGX DCAP platform software and tools
that support multi-package registration and a brief overview of the multi-package boot flows and
components.

PRK Certs

Registration
Authority

Service

CPU
Pkg B

Platform Keys

HW Key B

UPI

CPU
Pkg A

Platform Keys

HW Key A

UPI

Platform Keys
Pkg A s Identity

Platform Keys
Pkg B s Identity

Sealed User Data

Key Exchange

Platform

Figure 1: Multi-Package Server Overview

1.1.Terminology

Intel® SGX DCAP Intel® Software Guard Extensions Data Center
Attestation Primitives

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 5 -

Registration Authority Service The Registration Authority Service is the foundation
for provisioning and attesting multi-package
platforms. The PCK Certificate Provisioning Service &
attestation verifiers rely on the assertion of the
Registration Server that this platform is

trustworthy. Intel hosts Intel® Registration Service
for this purpose.

Registration Service Authentication Key
(RSAK)

Key that the registration authority service uses to sign
authorizations to add new packages to the platform
and its self-signed Registration Server ID structure.

Registration Service Encryption Key
(RSEK)

The registration authority service’s 3072-bit RSA key

used to encrypt/decrypt the platform keys.

Registration Service Name (RSNAME) Self-selected public ID of the Registration Authority
Service. Frequently the hash of the service domain
name.

Security Version Number (SVN) Version number that indicates when security relevant
updates have occurred. New versions can have
increased functional versions without incrementing
the SVN.

Platform Key This 128-bit key is the foundation of the provisioning
key derivations in a processor. Multi-package
platforms negotiate platform keys in the field. They
are delivered to the registration authority service
encrypted with the RSAK. They are stored by each
CPU package on the platform in the sealed and
encrypted key blobs using its respective unique
hardware key. SGX Sealing Keys use the platform key
in conjunction with another value that is unique to the
platform instance. The platform key alone is not
enough to unseal enclave-sealed user data.

Hardware Key This is the unique key that is available to the each SGX-
capable CPU package. It is derived directly from fuses
and used to derive PRK signatures and key blob
sealing keys.

Key Blob Data Structure that stores the platform keys for each
CPU device on the platform. Each device uses a unique
sealing key to encrypt the platform keys in the key
blob. Used by BIOS to determine the state of the
platform keys.

Platform Manifest The platform manifest allows the registration
authority service to evaluate whether the platform and
its components CPU packages are suitable for being

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 6 -

certified as an SGX platform. It contains the shared
platform keys that are encrypted using the
Registration Server’s Encryption Key (RSEK).

Provisioning Registration ID (PRID) Unique 128-bit ID for each CPU package that is used
for registration.

Platform Registration Key (PRK)
Unique 3072-bit RSA key pair for each processor
package that is used for Initial Platform Establishment,
TCB Recoveries and Add Package boot flows. This key
is TCB-specific. It is used to sign the platform
manifests. It is used in the protocol for establishing
protected sessions between processors. It is derived
from the HW key.

Provisioning Certification Enclave
(PCE)

Intel® SGX architectural enclave that uses a
Provisioning Certification Key (PCK) to sign REPORT
structures for Provisioning or Quoting Enclaves. These
signed REPORTS contain the ReportData indicating
that attestation keys or provisioning protocol
messages are created on genuine hardware.

Platform Provisioning ID (PPID)
Provisioning ID for a platform instance. PPID is not
TCB dependent. The PCE generates the PPID.

Platform Registration Key Certificate
(PRK Cert)

Binary certificates issued and signed by Intel for each
multi-package CPU device. A new PRK Certificate is
released for each CPU package when a microcode
patch with a new SVN is released.

Platform Membership Certificate Issued/signed by the Registration Service’s
Authentication Key (RSAK). They indicate that the
specified package, running the specified CPUSVN, is
authorized to access keys that are owned by the
indicated Platform Instance at a specific SVN. It
includes the Platform Registration ID (PRID), Platform
Info, and Registration Server of that package.

Platform Security Version Numbers
(PSVN)

The set of SVNs for all components in the Intel® SGX
provisioning Trusted Computing Base (TCB) including
the PCE’s SVN.

Provisioning Certification Key (PCK) Signing key that is available to Provisioning
Certification Enclave for signing certificate-like QE
REPORT structures. The key is unique to the processor
package or platform instance, the HW TCB, and the
PCE version (PSVN).

Provisioning Certification Key
Certificate (PCK Cert)

The x.509 Certificate chain that is signed and
distributed by the Registration Service for every SGX
enabled multi-package platform. It matches the
private key generated by the Provisioning Certification
Enclave (PCE).

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 7 -

Intel® SGX Registration Service Intel hosts a registration authority service called the
Intel® SGX Registration Service. The PCK Certificate
Provisioning Service & attestation verifiers rely on the
Intel® SGX Registration Server’s assertion that this
platform is trustworthy.

Intel® SGX Provisioning TCB The Trusted Computing Base of Intel® SGX
provisioning. Include the platform HW TCB and the
PCE’s SVN.

PCEID Identifies the version of the PCE that is used to generate
the PPID and PCK signing key.

SGX Quote Data structure that is used to provide evidence to an off-
platform entity that an application enclave runs with
Intel® SGX protections on a trusted Intel® SGX-
enabled platform.

Quoting Enclave (QE) The enclave that generates the attestation key used to
sign SGX Quotes.

QE_ID The default platform identifier that is used by the PCK
Cert ID Retrieval Tool and the run-time PCK certificate
requests. It is not a hardware identifier, and it is
generated by the Quoting Enclave.

Intel® SGX Provisioning Certification
Service (Intel® PCS)

Service hosted by Intel on the Internet that offers APIs
for retrieving the Provisioning Certification Key (PCK)
certificates and other Intel endorsements for
generating and verifying SGX Quotes.

Reference Provisioning Certification
Caching Service (PCCS)

A reference caching server to allow a CSP or a
datacenter to cache PCK Certificates and other
endorsements from the Intel® SGX Provisioning
Certification in their local network.

Table 1-1: Terminology

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 8 -

2. Overview

2.1. SGX Multi-Package Attestation Components

The infrastructure for supporting SGX multi-package registration includes the microcode of CPU
packages, the BIOS, the registration platform software, and a registration authority service (Intel®
SGX Registration Service).

2.1.1. Microcode

Microcode is responsible for verifying that each CPU package is SGX-capable and making sure that
each package has a consistent view of SGX-protected memory. It also generates the common platform
keys that each package uses for SGX key derivation. Microcode is the only component that can
generate the Provisioning Registration Key’s (PRK) private key based on the CPU package’s hardware
key. The PRK private key is unique to each CPU package and to the security version number (SVN)
of the loaded microcode patch.

Microcode generates a data structure called key blob for each CPU package in the platform. They
contain shared platform keys and other information about the platform. Each key blob is encrypted
and MAC’d with the respective hardware key. The key blobs are made available to the BIOS for
persistent storage. When BIOS presents a set of valid and matching key blobs to the microcode on
subsequent boot flows, the platform can be booted with SGX enabled and without performing
registration, and it can use the previously generated platform keys.

Microcode also generates a data structure called the platform manifest that contains information
about all CPU packages in the platform, signatures from all CPU packages using the PRK private keys,
and the platform keys encrypted with the Registration Server’s Encryption Key (RSEK).

Microcode can also share the platform keys with an added package once it has been certified by the
registration authority service.

2.1.2. BIOS

BIOS determines the boot flow based on the state of the available key blobs and on the security
version number (SVN) of the microcode patch present at platform reset. BIOS selects the value of SVN
to use in the boot flow. It can be equal to or lower than the value of the actual SVN of the loaded
microcode patch, but it cannot be higher. BIOS also collects the information about the registration
authority service (SgxRegistrationServerID) and loads the microcode patch.

Once a platform has been established, BIOS stores the generated key blobs and uses them on
subsequent boots. This way the platform can boot with previously generated platform keys.

When the Add Package boot flow is selected (see Add Package (Replace Package) for more details),
BIOS generates the add request structure. It also delivers the resulting platform membership
certificate to the microcode to complete the Add Package flow.

BIOS provides and consumes information between the OS software layer using the UEFI variables
that the BIOS Multi-Package UEFI Variables appendix describes.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 9 -

2.1.3. Platform Software

The multi-package platform software essentially acts as network transport layer between the BIOS
and the registration authority service. It also acts as management software for the various boot flows.
The multi-package platform software runs in the OS context. It can either run as an executable that
starts up on every boot, or it can be a set of tools used by datacenter and CSP managers. The way the
software is used depends on the SGX server environment.

The bulk of this document describes the platform software delivered by Intel.

2.1.4. Registration Authority Service

The registration authority service has three main functions:

1. Validate platform manifests for the Initial Platform Establishment and TCB Recovery boot
flows.

2. Process add requests and generate platform membership certificates.

3. Generate Platform Certification Key (PCK) certificates for registered platforms.

Each platform instance is related to only one registration authority service. If a platform needs to
register with a different registration authority service, new platform keys need to be generated.

When the registration authority service receives a platform manifest for a new platform, it makes
sure all PRK signatures from all participating CPU packages come from valid SGX-enabled CPU
packages in good standing. The registration authority service contains a database of all PRK
certificates generated by Intel. If a PRK certificate is not found or the signature check fails, the
registration authority service sends an error back to the platform software/BIOS, and that platform
is not recorded in the service database. If any of the PRK certificates are revoked, the service does
not record the platform and responds with the appropriate error. The service also checks that all
platform CPU packages are compatible with one another and that the CPU package topology is valid.

If the platform is not recorded in the registration service, it cannot generate PCK certificates for that
platform, so it prevents the platform from running remote attestation. Note that the platform still
has SGX enabled since the microcode and BIOS boot flow succeeded. It just cannot run remote
attestation. If it succeeds, the platform is recorded in the registration service database and PCK
certificate generation is possible.

When the registration authority service receives an add request, it verifies that a PRK certificate
exists for the package’s PRID and CPUSVN. If it exists, it verifies that it is not revoked. Then it
verifies that the package is consistent with the existing platform. If all these checks pass, the
registration authority service constructs the platform membership certificate and sends it back in
the response. The registration authority service does not check any signature on the add request
since the add request is generated by BIOS, which does not have access to the PRK private key. The
platform manifest certificate contains the PRK public key and the platform information all signed by
the Registration Server’s Authorization Key (RSAK). When microcode completes Add Package flow,
it uses the PRK public key to verify a PRK signature from the new package before providing it with
the platform keys.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 10 -

Software needs to communicate the platform manifests and the add requests to the registration
authority service and process the responses. Responses to platform manifests contain status
information and the platform’s Platform Provisioning ID (PPID). Responses to add requests contain
status information and may also contain platform membership certificates.

To support multi-package platform remote attestation for SGX, the registration authority service
needs to be capable of generating PCK certificates. Once the encrypted platform keys for multi-
package platforms are delivered to the registration authority service, the registration authority
service uses its knowledge of the Provisioning Certification Enclave (PCE) identity to generate the
PCK public key.

Intel hosts a registration authority service called the Intel® SGX Registration Service (Intel® SGX
RS). For more information on the Intel® SGX RS, see
https://api.portal.trustedservices.intel.com/

2.2. SGX Multi-Package States

The SGX platform keys for a multi-package platform have a lifecycle depending on the state of the
boot flow. This section provides a brief overview of each state.

Initial Platform Establishment (IPE)
Generate provisioning root keys (KeyBlobs), Identify

neighbors, and create platform manifests.

Retirement/Waterfall
BIOS deletes provioning root keys (KeyBlobs) from

flash.

Steady State (Normal Boot)
SGX usable with the existing consistent KeyBobs

Package Add
New package was added on cold boot. BIOS

generates Add Request. Existing packages provide
new package with provisioning root keys after

verifying Platform Membership Certificate .

TCB Recovery (TR)
A new uCode patch with a new SVN applied at reset.
Generate a new provisioning root key and add it to
Key Blobs. Generate new platform manifest with

new provisioning root key

Figure2: Platform Key Life Cycle

The BIOS uses data structures called key blobs to determine the state of the platform. The key blobs
contain the platform keys that are negotiated for the platform. Each CPU package needs to have a
consistent key blob structure to boot successfully with SGX enabled. BIOS stores the key blobs in
persistent storage (FLASH).

https://api.portal.trustedservices.intel.com/

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 11 -

2.2.1. Initial Platform Establishment (IPE)

During the Initial Platform Establishment boot flow, the BIOS checks the key blobs for each CPU
package to verify that they are all consistent with each other and the platform. BIOS deletes the
inconsistent key blobs. If there are no key blobs or none of the key blobs are consistent with the
current platform, BIOS provides no key blobs to microcode. Microcode sees that there are no key
blobs provided and generates new platform keys. If BIOS selects to boot with microcode patch SVN
that is equal to or less than the actual value of the SVN of the microcode patch loaded at reset,
microcode generates platform keys for the provided SVN and all lower SVNs. The new platform keys
are randomly generated for this platform instance. Each CPU package uses its HW key to encrypt the
shared platform keys and generate a key blob. BIOS stores the key blobs in flash for future boots.
Microcode also generates a new platform manifest for the new platform instance. BIOS provides the
new platform manifest to software via the SGXRegistrationServerRequest UEFI variable and
indicates that a registration flow is required using the SGXRegistrationStatus UEFI variable. The
registration authority service must evaluate the new platform manifest before it can generate any
PCK Certificates for the new platform.

2.2.2. Normal

During normal boot, the BIOS checks the key blobs for each CPU package to verify they are all
consistent with each other and the platform. If the key blobs indicate that they contain the key for
the SVN of the microcode patch loaded at reset, BIOS provides them to microcode. Microcode verifies
the key blobs for each package using the CPU packages’ respective HW key. If microcode successfully
verifies the key blobs, the registration authority service has nothing to verify, and it does not request
the BIOS/software to do anything. In this case, the platform uses the platform keys stored in the key
blobs.

2.2.2.1. Microcode Downgrade

This is a special case of a Normal boot flow. The BIOS checks the key blobs for each CPU package to
verify that they are all consistent with each other and the platform. In this case, the SVN of the
microcode patch that is loaded at reset is lower than the highest platform key in the key blob. This is
supported, and the platform boots with the existing platform keys. Microcode does not have access
to the platform keys that are higher than the SVN of the microcode patch that is loaded at reset.

2.2.2.2. Removing CPU Packages

Removing CPU packages has no impact to the existing CPU packages or the platform keys. This is a
Normal boot flow.

2.2.2.3. Re-arranging CPU Packages

If the same set of CPU packages is in different sockets, BIOS and microcode recognize that the same
CPU packages make up the platform and the platform keys are not recreated. Rearranging the CPU
packages is considered to be a Normal boot flow.

2.2.3. TCB Recovery (TR/TCB-R)

During a TCB Recovery boot, the BIOS checks the key blobs to verify that they are all consistent with
each other and the platform. In this flow, the BIOS detects that the platform loaded a microcode patch

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 12 -

at reset with a higher SVN than the highest platform key in any of the key blobs. BIOS requests
microcode boot at this new SVN. Microcode sees that its SVN is greater than the highest SVN key in
the key blobs and generates a new platform key for that SVN (and any platform keys between the
highest in the key blob and the booting SVN). These platform key(s) are shared with all the packages
on the platform and added to each of key blobs. Microcode also creates a new platform manifest that
has the new platform key(s) added. BIOS provides the platform manifest with the new platform
key(s) to software via the SGXRegistrationServerRequest UEFI variable and indicates that a
registration flow is required using the SGXRegistrationStatus UEFI variable. The registration
authority service must evaluate the new platform manifest before it can generate a PCK Certificate(s)
at the new SVN level(s).

2.2.4. Add Package (Replace Package)

During an Add Package flow, BIOS checks the key blobs to verify that they are consistent with each
other and the platform. In this flow, BIOS detects that at least one of the packages does not have a
key blob or that its key blob is not consistent with the platform (BIOS deletes the inconsistent key
blobs). BIOS then generates an add package request and disables SGX. Since SGX is disabled, the
microcode does not evaluate the existing key blobs. BIOS provides the add package structure with
the identity of the new package(s) to the platform software via the SGXRegistrationServerRequest
UEFI variable and indicates that an Add Package flow is required using the SGXRegistrationStatus
UEFI variable. The registration authority must evaluate the add package structure before the
microcode can share the existing platform keys to the new CPU package. The registration authority
service evaluates the add package request and generates a signed platform membership certificate(s)
verifying that the CPU package(s) is authenticate and in good standing. The platform membership
certificate includes the PRK public key of the CPU package, and it is signed by the registration
authority service’s RSAK.

The platform software then provides the platform membership certificate back to BIOS via the
SGXRegistrationServerResponse UEFI variable. The platform must then be rebooted. Upon reboot,
BIOS sees that a package is missing a key blob, and instead of disabling SGX, it provides the existing
key blobs and the platform membership certificate(s) for the new CPU package(s) to microcode
loader. Microcode evaluates the key blobs and the platform membership certificate(s). If everything
verifies properly, the new CPU package is provided the platform keys and microcode creates a key
blob for the new CPU package. The platform then boots with SGX enabled.

If a you do not want to support the Add Package flow, you can perform an SGX factory reset to erase
the key blobs and force an Initial Platform Establishment flow when a new package is added or
replaced. You can also use the BIOS User Interface (UI) ‘SGX APB Support’ setting to disable the Add
Package boot flow. With this disabled in BIOS, BIOS automatically enters the IPE flow instead of the
Add Package flow when BIOS detects a new CPU package.

See the add package API supported by the Intel® Registration Service at
https://api.portal.trustedservices.intel.com/.

2.2.5. Retirement/Waterfall

The same collection of CPU packages can conduct IPE flows multiple times on the same physical
platform. This is useful for waterfalling/recycling. Each IPE flow generates new platform keys and

https://api.portal.trustedservices.intel.com/

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 13 -

creates a new ‘platform instance’. Each platform instance has its own platform keys and platform
manifests.

There is a BIOS setting that allows the platform owner to perform a factory reset on the SGX state
and settings. This deletes all the key blobs for that platform and forces a new IPE flow.

2.3. UEFI Variables and Tboot

When Intel® TXT is enabled and using TBOOT, the TBOOT loader will launch the Linux kernel with
the ‘noefi’ parameter. This will disable the UEFI Runtime Services in the OS. TBOOT does this because
any component that runs before TBOOT executes the GETSEC[SENTER] instruction is not in the TCB
(BIOS, MBR, GRUB bootloader, etc). Any measurements made by these components are not trusted.
Since TXT does not measure the UEFI Runtime Services, TBOOT boots the Linux kernel with the
‘noefi’ parameter.

As a result of the ‘noefi’ parameter, the UEFI variables used to enable the flows described in SGX
Multi-Package States are not available. This means the platform cannot complete the IPE, TR and
Add Package flows when TBOOT is run.

When the platform needs to perform the IPE, TR and Add Package flows with TBOOT support, the
kernel needs to boot without the ‘noefi’ parameter, perform the operation, and reboot with TBOOT
and the ‘noefi’ parameter.

The impact of this restriction can be limited:

1. IPE flow:
- The TBOOT provisioning stage requires a non-TBOOT OS flow and a reboot.
- The IPE provision stage can happen during the same OS boot flow by reading the Platform

Manifest from the UEFI variable

2. The Add Package
- Requires a boot to the OS with SGX disabled.
- During this boot, TBOOT can be disabled or boot without ‘noefi’.
- Add Package requires a reboot to complete.
- Next boot, TBOOT can be enabled and linux booted with ‘noefi’.

3. TCB Recovery
- The platform needs to reboot to perform a TCB Recovery since it requires a new uCode

patch to be loaded at reset.
- Without TBOOT, an additional reboot would not be required.
- With TBOOT, TCB Recovery requires access to the UEFI variables.

o After the uCode has been updated, you need to boot with out TBOOT or boot
without ‘noefi’ and collect the Platform Manifest from the UEFI variable.

o Another reboot is required to re-enable TBOOT.
- TCB Recoveries are limited to 2 times a year.

2.4. SGX Multi-Package Registration Modes

Intel’s registration authority service (Intel® SGX Registration Service) supports two mechanisms for
registering a platform. This section describes these methods.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 14 -

Note that SGX can be enabled and available even when the platform is not registered. However,the
platform cannot perform remote attestation until it is successfully registered.

2.4.1. Direct Registration

In direct registration, the platform manifests are sent directly to the Intel® SGX Registration Service’s
register API (https://api.portal.trustedservices.intel.com/). When you use this interface to register
a platform, you implicitly give permission to store the encrypted platform keys in the Registration
Service’s database. When the Registration Service later generates a PCK Certificate, it sets the
‘Cached Keys’ OID to ‘true’ to indicate that the Registration Service is caching the encrypted platform
keys. You may use the ‘Indirect Registration’ method later, but it does not affect the value of the
‘Cached Keys’ flag. Once the ‘Cached Keys’ flag is set in the Intel® SGX Registration Service, it cannot
be reversed for that platform instance.

Registering the platform using direct registration allows requesting a PCK Certificate with just the
platform’s Platform Provisioning ID (PPID) of the platform. The PPID is derived from the platform
keys and both the Registration Service and the Intel® SGX PCE can generate the PPID. The PCK
requester does not need to store the platform manifest once it is registered with the Registration
Service.

2.4.2. Indirect Registration

In indirect registration, the platform manifests are not sent directly to the Intel® SGX Registration
Service. Instead, the PCK Certificate is generated using the platform manifest as input, and the
Registration Service only uses encrypted platform keys of the platform manifest long enough to
generate the PCK Certificate. It does not store them permanently. It only stores platform metadata.
The PCK Certificates that is generated this way sets the ‘Cached Keys’ OID to ‘false’ to indicate that
the Registration Service is not caching the encrypted platform keys. If a platform manifest from the
same platform instance is later sent to the Registration Service’s direct registration API, the
Registration Service returns an error to maintain the consistency of the ‘Cached Keys’ flag policy.
Once the ‘Cached Keys’ flag is set in the Intel® SGX Registration Service, it cannot be reversed for that
platform instance.

When you use this method, PCK Certificates cannot be requested using the PPID since the
Registration Service does not have the platform keys required to generate PPID. Instead, the platform
manifest must be provided to generate the PCK Certificates. You must maintain a copy of the platform
manifests.

2.4.2.1. Intel® SGX Provisioning Certification Service (Intel® PCS)

The Intel® SGX Provisioning Certification Service offers APIs for retrieving PCK Certificates. This
service was introduced to support third party attestation for single package platforms. It has been
expanded to include support for multi-package platforms. See
https://api.portal.trustedservices.intel.com for more information.

The new APIs support indirect registration by allowing the platform owner to request PCK
Certificates using the platform manifest for multi-package platforms.

https://api.portal.trustedservices.intel.com/
https://api.portal.trustedservices.intel.com/

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 15 -

2.4.3. Registration Environments

The registration environment, where the SGX platform runs, depends on the SGX server deployment
flow that you use. In some cases, the platforms are released as an end-user system and registration
occurs in the customer environment with access to the internet. The environments are mostly used
for server workstations and some small enterprises. For others, there are distinctly different
operating environments for the provisioning phase and for the run-time phase of the platform
lifetime. For both environments, access to the internet is typically controlled, and therefore access to
the registration authority service is not available to the SGX platform.

2.4.3.1. Single-Stage Registration

Typically, the registration authority service (such as the Intel® SGX Registration Service) is hosted
on the Internet. For platforms that have access to the Internet, the platform can simply register
directly with registration when it first boots. There is no need to proxy the registration, and
registration can happen in a single stage. In the single-stage environment, a software agent
supporting server registration flows runs automatically at boot time. It can check the BIOS UEFI
interface for registration request data, send it to the registration authority service and then process
the responses returned by the registration authority service accordingly.

Single-stage registration can satisfy small enterprises or server workstations that want a simpler
registration flow and do not want to make large investments into registration infrastructure.
Platform owners can also use the single-stage environment to support a simple validation
environment. See using the Multi-Package Registration Agent (MPA) for more information on
supporting this environment.

2.4.3.2. Dual-Stage Registration

In the dual-stage environment, the platform requiring registration does not have access to the
Internet (and subsequently an externally hosted registration authority service). Instead, there is a
proxy that performs communication with the registration authority service on its behalf. The
platform can be moved to the run-time environment once the proxy successfully delivers the
platform manifest to the registration service either directly or indirectly.

Currently, only the platform manifest retrieval is supported in the dual-stage environment since it
does not require a response from the registration authority service to complete the flow. The Add
Package flow requires a response from the registration authority service (the platform membership
certificate) to complete the flow and enable SGX. Add Package flows may not be suitable for the dual-
stage environment unless you can get immediate responses from the registration authority service
or the platform can be provisioned with the platform membership certificate later.

See PCK Cert ID Retrieval Tool for more information on supporting this environment.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 16 -

3. Multi-Package Registration Platform Software Tools

The Intel® SGX Data Center Attestation Primitives (DCAP) release has added new tools and extended
existing tools to support multi-package platform registration. These tools use the Multi-Package
Registration Libraries described in a later section. These tools are created to quickly support multi-
package platform registration in their datacenter or cloud service provider environments.
Customers can modify or design their own tools using the multi-package libraries. These DCAP tools
and libraries are released in binary format for Linux* (https://download.01.org/intel-
sgx/latest/dcap-latest/linux/tools/) and for Windows* (https://download.01.org/intel-
sgx/latest/dcap-latest/windows/tools/). For the open source for these tools, see

https://github.com/intel/SGXDataCenterAttestationPrimitives/tree/master/tools/SGXPlatformRe
gistration.

3.1. Multi-Package Registration Agent (MPA)

The Multi-Package Registration Agent (MPA) is an executable that launches as a daemon/service
automatically after boot. Upon OS boot, it examines the state of the BIOS Multi-Package UEFI
Variables to determine if there is any registration action to take. This tool requires Internet access.
It also requires access to the UEFI SGX variable interface, which is only available to bare-metal
platforms or to the Host VM. So, this tool may not be suitable for datacenters or Cloud Service
Providers (CSP’s) that have a separate provisioning environment and customer workload
environment where customer workloads run in guest VMs and platform provisioning happens
without an Internet connection. This tool may be most useful for validation purposes or workstations
with Internet connection (Single Stage Registration). This tool is available as open source, and you
can use it as a reference for communicating to both the SGX MP UEFI variables and the Intel® SGX
Registration Service (SGX MP Network).

BIOS resets the SgxRegistrationStatus.Status.SgxRegistrationComplete to 0 when a registration
request is available for processing. BIOS clears this bit when there is a successful IPE boot flow, TCB
Recovery boot flow, and the Add Package boot flow. When this flag is 0, the BIOS puts data in the
SgxRegistrationServerRequest UEFI variable that needs processing. For the IPE boot flow and the
TCB Recovery boot flow, the SGXRegistrationServerRequest UEFI variable contains the platform
manifest structure. For the Add Package boot flow, the SGXRegistrationServerRequest UEFI variable
contains the add package structure. The MPA treats the platform manifest and add package structure
as blobs and only parses the header to determine which of the data structures BIOS provided.

The MPA first checks if BIOS has reported any errors by scaning the SgxRegistrationStatus.Errorcode.
Then it checks the SgxRegistrationStatus.Status.SgxRegistrationComplete flag to see if it has been
reset to 0. If both the SgxRegistrationStatus.Errorcode is ‘success’ and the
SgxRegistrationStatus.Status.SgxRegistrationComplete flag is 0, the MPA reads the
SgxRegistrationServerRequest UEFI variable and parses the data structure header to determine what
type of data structure needs processing (currently, only platform manifest and add package
structures are supported). The MPA sends the data structure to the Intel® SGX Registration Service.
When the MPA successfully communicates to the Registration Service or it encounters a non-
recoverable error, it sets the SgxRegistrationStatus.Status.SgxRegistrationComplete to 1 to indicate
that BIOS does not need to provide the data structure again on a subsequent boot. If the MPA receives
an error that can be recoverable, it does not set the

https://download.01.org/intel-sgx/latest/dcap-latest/linux/tools/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/tools/
https://download.01.org/intel-sgx/latest/dcap-latest/windows/tools/
https://download.01.org/intel-sgx/latest/dcap-latest/windows/tools/
https://github.com/intel/SGXDataCenterAttestationPrimitives/tree/master/tools/SGXPlatformRegistration
https://github.com/intel/SGXDataCenterAttestationPrimitives/tree/master/tools/SGXPlatformRegistration

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 17 -

SgxRegistrationStatus.Status.SgxRegistrationComplete to 1 to indicate that BIOS should provide the
same structure on a subsequent boot so the MPA can retry processing the structure again.

The MPA sends the requests to the URL provided by the SgxRegistrationConfiguration UEFI variable
using the API defined by the Intel® SGX Registration Service. Once complete, the MPA stops its
service/daemon.

3.1.1. Platform Manifest Handling

BIOS provides platform manifests on IPE boot flows and TR boot flows. It also provides them in
Normal boot flow when the SgxRegistrationComplete flag is 0 (indicating a retry). There is no
response data from the Registration Service after sending the platform manifest. The MPA treats
some server response codes as terminal when no amount of retries fixes the problem. In this case,
the MPA sets the SgxRegistrationComplete flag to 1 so that BIOS does not provide the same platform
manifest on a subsequent boot.

The list of response codes from the Intel® SGX Registration Service response codes that terminate
the registration process:

• 201 - Created (The platform instance is created or updated in the Registration Service
database)

• 400 - Invalid Platform Manifest (Client should not repeat the request without modifications)
o ErrorCode = InvalidRequestSyntax
o ErrorCode = InvalidRegistrationServer
o ErrorCode = InvalidOrRevokedPackage
o ErrorCode = PackageNotFound
o ErrorCode = IncompatiblePackage
o ErrorCode = InvalidPlatformManifest
o ErrorCode = CachedKeyPolicyViolation

The list of response codes from the Intel® SGX Registration Service response codes that do not
terminate the registration process:

• 401 - Failed to authenticate or authorize the request
• 415 - MIME type specified in the request is not supported by the server.
• 500 - Internal server error occurred
• 503 - Server is currently unable to process the request.

There are also internal MPA errors that are considered terminal. See section MPA Error Codes for a
list of these errors.

3.1.2. Add Package Handling

Handling an Add Package flow is more complicated than platform manifests. The MPA expects a
response from the Registration Service. This response contains the platform membership
certificate(s) for the new CPU package(s). If the response does not contain the platform membership
certificate, the MPA reports a failure. This flow requires internet connection to directly interact with
the Registration Service. The Intel® SGX Registration Service requires that the user subscribes for
an API key to use the add package API.

BIOS provides an add package structure in the Add Package boot flow. It also provides them in a
Normal boot flow when the SgxRegistrationComplete flag is 0 indicating a retry. The MPA treats

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 18 -

some server response codes as terminal, and retries do not fixe the problem. In this case, the MPA
sets the SgxRegistrationComplete flag to 1 so that BIOS does not provide the same add package
structure on a subsequent boot.

The list of Intel® SGX Registration Service response codes that terminates the add package process:
• 200 - OK
• 400 - Invalid Platform Manifest (Client should not repeat the request without modifications)

o ErrorCode = InvalidRequestSyntax
o ErrorCode = PlatformNotFound
o ErrorCode = InvalidOrRevokedPackage
o ErrorCode = PackageNotFound
o ErrorCode = InvalidAddRequest

The list of Intel® SGX Registration Service response codes that does not terminate the add package
process:

• 401 - Failed to authenticate or authorize the request
• 415 - MIME type specified in the request is not supported by the server.
• 500 - Internal server error occurred
• 503 - Server is currently unable to process the request.

There are also internal MPA errors that are considered terminal. See section MPA Error Codes for a
list of these errors.

3.1.3. Configuration

The MPA can be configured with the following settings. Linux configurations are provided in a
configuration file. Windows configurations are provided by registry keys.

• Subscription Key – Only required for Add Package flows. Provided by the Intel® SGX

Registration Service upon subscribing.
o Config Location:

▪ Linux: /etc/mpa_registration.conf
▪ Windows:

• KEY_LOCAL_MACHINE\SOFTWARE\Intel\SGX_RA\RASubscriptionKey

• Add the following String key name "token"
o <64byte-hex-value>
o e.g: 7a963d696ff94b7d82df4cbe924b1574

• Proxy Setting – Modify the proxy settings used by the MPA
o Values:

Proxy Type Linux Value Windows Value

Use the configuration in your
operating system (default value)

default 0

Direct access to the internet direct 1

Set the proxy URL directly
- Supports authenticated

proxy.

manual 2

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 19 -

- Proxy URL uses standard
format:
user:password@proxy:port

o Config Location:
▪ Linux: /etc/mpa_registration.conf
▪ Windows:

• HKEY_LOCAL_MACHINE\SOFTWARE\Intel\SGX_RA\RAProxy

• Add the following DWORD key name "type" and set it to one of the
Windows Values from the table above.

o If you set it to ‘2’ (manual), then also add the String key "url"
and set the URL in the standard format described in the table
above.

• Log Level
o Values:

Logging Level Linux Value Windows Value

None none 0

Functional func 1

Error (default
value)

error 2

Verbose info 3

o Config Location:
▪ Linux: /etc/mpa_registration.conf
▪ Windows:

• HKEY_LOCAL_MACHINE\SOFTWARE\Intel\SGX_RA\RALog

• Add the the DWORD key “level” and set it to one of the Windows Values
from the table above.

o Logging output:
▪ Linux - /var/log/mpa_registration.log
▪ Windows –

• C:\Windows\System32\Winevt\Logs\Application.evtx

• Open Application.evtx (from another platform with Windows GUI)

• Look for “IntelMPAService” records in the “source” column

• UEFI path
o Values:

▪ /sys/firmware/efi/efivars (Default)
o Config Location:

▪ Linux: /etc/mpa_registration.conf
▪ Windows: Not available for Windows

3.1.3.1. BIOS Registration Authority Service Configuration

The BIOS uses a default URL for the Intel® Registration Service in the
SgxRegistrationServerConfiguration UEFI variable. The platform owner can modify the registration
service configuration using the SgxRegistrationServerConfiguration UEFI variable but only when SGX
is disabled.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 20 -

The BIOS also has a BIOS User Interface (UI) (‘SGX Auto MP Registration’) setting that allows the
platform owner to enable/disable the MPA from running automatically at OS boot. By default, the
MPA does not automatically run at boot.

3.1.4. Error Codes

The MPA writes an error code to the ErrorCode field of the SgxRegistrationServerStatus UEFI
variable when it completes. These are the possible ErrorCode values produced by the MPA (the MPA
error codes always have the MSBit of the ErrorCode field):

MPA_SUCCESS (0x00)

 Completed without any errors

MPA_AG_UNEXPECTED_ERROR (0x80)

Unexpected internal error

MPA_AG_OUT_OF_MEMORY (0x81)

Out-of-memory error

MPA_AG_NETWORK_ERROR (0x82)

Proxy detection or network communication error

MPA_AG_INVALID_PARAMETER (0x83)

Invalid parameter in input

MPA_AG_INTERNAL_SERVER_ERROR (0x84)

Internal server error occurred

MPA_AG_SERVER_TIMEOUT (0x85)

Server communication timeout

MPA_AG_BIOS_PROTOCOL_ERROR (0x86)

BIOS UEFI protocol error

MPA_AG_UNAUTHORIZED_ERROR (0x87)

The client is unauthorized to access the registration server

MPA_RS_INVALID_REQUEST_SYNTAX (0xA0)

Server could not understand request due to malformed syntax

MPA_RS_PM_INVALID_REGISTRATION_SERVER (0xA1)

Server rejected request because it is intended for different registration server
(Registration Server Authentication Key (RSAK) mismatch)

MPA_RS_INVALID_OR_REVOKED_PACKAGE (0xA2)

Server rejected request due to invalid or revoked CPU package

MPA_RS_PACKAGE_NOT_FOUND (0xA3)

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 21 -

Server could not recognize at least one of the CPU packages

MPA_RS_PM_INCOMPATIBLE_PACKAGE (0xA4)

Server detected at least one of the CPU packages is incompatible with rest of the CPU
packages on the platform

MPA_RS_PM_INVALID_PLATFORM_MANIFEST (0xA5)

Server could not process the platform manifest structure

MPA_RS_AD_PLATFORM_NOT_FOUND (0xA6)

Server rejected add package request because the platform has not been registered

MPA_RS_AD_INVALID_ADD_REQUEST (0xA7)

Server could not process the add package structure

MPA_RS_UNKOWN_ERROR (0xA8)

Server rejected request for unknown reason (Probably means MPA needs to be
updated with newly defined server response errors)

3.2. PCK Cert ID Retrieval Tool

The PCK Cert ID Retrieval Tool is an executable that collects the platform information that is
necessary for retrieving PCK Certs from the Intel® SGX Provisioning Certificate Service (PCS). The
DCAP releases for single-package platforms already include the PCK Cert ID Retrieval Tool, but it has
been expanded to include support for multi-package platforms.

The main expansion to the tool is its ability to retrieve the platform manifest from the
SgxRegistrationServerRequest UEFI variable. By retrieving the platform manifest, this tool supports
Indirection Registration better by allowing to store the platform manifest and use it later for
retrieving PCK Certificates. The registration authority service does not need to persistently store the
platform keys when the platform owner maintains a copy of the platform manifest for retrieving PCK
Certificates.

Unlike the PCK Cert ID Retrieval Tool support for single package platforms, the tool needs to run in
the host VM or on baremetal to get access to the UEFI variables. The SGX UEFI variables are not
exposed to guest VMs. This tool is expected to run in the platform deployment environment when a
platform is assembled or when a TCB Recovery event occurs requiring a new microcode patch
applied at reset. It is not expected to run in a guest VM. For nore information, see Dual Stage
Registration.

By default, this tool loads enclaves to retrieve the platform identification data. This is required for
single package platforms. For multi-package platforms, it can be configured to get limited platform
identification information without loading any enclaves. For more information, see Platform ID
Without Enclave Loading.

Unlike the MPA, the PCK Cert ID Retrieval Tool does not require internet connection. The PCK Cert
ID Retrieval Tool can output the platform ID information to a file, or it can be configured to send the
data to the DCAP’s reference Caching Service (See PCK Certification Caching Service (PCCS)for more
information).

https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/SGX_DCAP_Caching_Service_Design_Guide.pdf

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 22 -

The tool links with the SGX Multi-Package UEFI Variables Access Library.

3.2.1. Platform Manifest Handling

BIOS provides platform manifests on IPE boot flows and TR boot flows. It also provides them in
Normal boot flow when the SgxRegistrationComplete flag is 0 indicating a retry. This tool always
checks the SgxRegistrationServerRequest UEFI variable directly and ignores the value of the
SgxRegistrationComplete flag. If it finds the platform manifest, it adds it to its platform ID output.

Although this tool does not check the SgxRegstrationComplete flag to be 0 before reading the
SgxRegistrationServer Request, it writes 1 to the SgxRegstrationComplete flag if it successfully
processes the SgxRegistrationServerRequest UEFI variable.

3.2.2. Add Package Handling

The PCK Cert ID Retrieval Tool does not support Add Package flows. If it encounters an add package
structure in the SgxRegistrationServerRequest UEFI variable, it generates an error. You should use
other means to support Add Package flows.

3.2.3. Configuration

The PCK Cert ID Retrieval Tool has two major operating modes:
1. Output platform ID information to a comma-separated values (CSV) file
2. Send platform ID information to the reference design PCCS on the local network

a. Network configuration can be specified by an XML file.
b. Network configuration can be specified on the command line.

Valid Command line Parameters:
Command Line Parameter Description

 -f <filename> Output the platform ID information to
the "filename". The output is a comma-
separated value (CSV) file with base-16
encoding.

 -url <cache_server_address> Reference PCCS’s URL.
Only needed when using the network to
communicate to the PCCS.

 -user_token <token_string> User token to access the PCCS.
Only needed when using the network to
communicate to the PCCS.

 -proxy_type <proxy_type> Proxy setting when accessing the PCCS.
Only needed when using the network to
communicate to the PCCS.

 -proxy_url <proxy_server_address> Proxy server address.
Only needed when using the network to
communicate to the PCCS.

 -use_secure_cert <[true | false]> Accept secure/insecure https cert.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 23 -

Only needed when using the network to
communicate to the PCCS.
Default value is true

 -platform_id <platform_id> When provided, no enclaves are loaded.
You need to provide a unique platform
id that can be used to identify the
platform at run-time.

 -? Show command help

 -h Show command help

 -help Show command help

3.2.3.1. Outputting to a CSV File

The PCK Cert ID Retrieval tool can output the platform identification information using the ‘-f’
command line parameter.

Note: All integer fields are in little-endian format.

<EncryptedPPID (384 byte array)>,
<PCE_ID (16 bit integer)>,
<CPUSVN (16 byte array)>,
<PCE ISVSVN (16 bit integer)>,
<PLATFORM_ID (16 byte array)>,
<PLATFORM_MANIFEST (variable byte array)>

This output is the same as it was for the single-package platforms with the addition of the platform
manifest. The platform manifest is an optional output to the CSV file, and it is not present on single-
package platforms or on multi-package platform boot flows that do not provide a platform manifest.

Because the EncryptedPPID cannot be used as a platform identifier due the randomness entropy of
the encryption algorithm, the PLATFORM_ID is used as platform identifier for the platform. If the -
platform_id parameter is not provided, the DCAP Quoting Enclave (QE) generates a QE_ID as the
platform_id. If the PLATFORM_ID is used as input, the Quote Provider Library must use the same
PLATFORM_ID when retrieving the PCK Certificates from the PCCS.

3.2.3.2. Outputting to the Reference Provisioning Certification Caching Service (PCCS)

The PCK Cert ID Retrieval Tool can be configured to send the platform ID information to the Intel
reference PCCS. The PCCS exposes a REST API for accepting the platform ID information. See PCK
Certification Caching Service (PCCS) for more information. The network configuration can be
provided on the command line or by entering the information into an xml configuration file
(network_configuration.conf). The command line configurations take precedence. This is convenient
if the multi-package platform can reach the local network in the provisioning environment.

3.2.3.3. Platform Identity Without Enclave Loading

The PCK Cert ID Retrieval Tool may run in a constrained environment during platform provisioning.
It may not have OS support for loading enclaves or all of the DCAP software packages installed, or
you may have a specific need to choose/supply their own platform ID. To support these

https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/SGX_DCAP_Caching_Service_Design_Guide.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/SGX_DCAP_Caching_Service_Design_Guide.pdf

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 24 -

environments better, the PCK Cert ID Retrieval Tool supports a mode that only retrieves the platform
manifest and does not retrieve the platform ID information that requires loading any enclaves. The
output of the CSV file or the data sent to the PCCS only contains the PCEID, the platform manifest and
a user-supplied run-time platform identifier. The run-time platform identifier replaces the QE_ID in
the platform ID information. This platform identifier can be used during run-time for requesting PCK
Certificates because the platform manifest is not available to guest VMs. Providing the ‘-platform_id’
command line parameter selects this mode of operation

3.3. Multi-Package Management Tool

The DCAP release for multi-package platforms also includes a management tool to provide status and
configuration to the platform from the OS software. Like the PCK Cert ID Retrieval Tool, it links with
the SGX Multi-Package UEFI Variables Access Library.

Command Line Parameter Description

 -get_platform_manifest <file_name> Reads the SgxRegistrationServerRequest UEFI
variable to get the platform manifest when
present. It outputs the platform manifest in binary
form to the file specified in <file_name>.

 -get_key_blobs <file_name> Reads SgxRegistrationPackageInfo UEFI variable to
get the key blobs when present. It outputs the key
blobs in binary form to the file specified in
<file_name>.

 -set_server_info <file_name> <hex_flags> <URL> Used to change the registration authority service.
<file_name> contains the self-signed
SgxRegistrationServerID from the registration
authority service.
<hex_flags> indicates the value of ‘Flags’ in
SgxRegistrationConfiguration UEFI variable.
<URL> the URL of the registration authority
service.

 -get_registration_status Reports whether it is completed or in progress.
This is the reporting the value of the
‘SgxRegistrationComplete’ flag in the
SgxRegistrationStatus UEFI variable.

 -get_last_registration_error_code Reports the registration error code. It is the value
of the ‘Status.ErrorCode’ field in the
SgxRegistrationStatus UEFI variable. The error
code can be from the BIOS or from the MPA.

 -get_sgx_status Reports the status of SGX.

-v Produce verbose output.

 -h Show command help.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 25 -

3.3.1. Changing the Registration Authority Service

BIOS provides a default registration authority service configuration. For the Intel reference BIOS, the
default registration authority service is the Intel® SGX Registration Service. The SGX multi-package
platforms support modifying the registration authority service with the
SgxRegistrationConfiguration UEFI variable. This variable becomes writable only when the platform
owner disables SGX via the BIOS configuration settings. The registration authority service does not
need to generate a self-signed SgxRegistrationServerID structure. This combined with the
registration authority service URL is the SgxRegistrationServerInfo structure. The platform owner
then writes the SgxRegistrationServerInfo to the SgxRegistrationConfiguration UEFI variable.

On the next SGX enabled boot, key blobs generated for a different registration authority service are
deleted and BIOS forces an Initial Platform Establishment boot flow. This results in new key blobs
and a new platform manifest.

3.3.2. Handling Key Blobs

Each CPU package on the platform has a key blob when SGX is enabled on a multi-package platform.
BIOS provides a mechanism for retrieving the key blobs. Platform owners may want to maintain a
copy of the key blobs in case they need to be restored after they are deleted from BIOS persistent
store (e.g. the FLASH was erased or SGX was reset). The SgrRegistrationPackageInfo UEFI variable
provides the key blobs. By default, BIOS does not present the key blobs to the software. The platform
owner needs to ‘opt-in’ using the BIOS configuration setting (‘SGX Package Info In-band Access’)
before BIOS provides the key blobs.

3.3.3. Registration Error Codes

The error codes written to the ‘Status.ErrorCode’ field in the SgxRegistrationStatus UEFI variable can
come from one of two sources. BIOS writes to this field when an error occurrs during a boot flow.
The MSBit of the ErrorCode is 0 when generated by BIOS. The software can also use this field to
report any errors in processing the data from BIOS. The MSBit of the ErrorCode is 1 when generated
by software. Software should not overwrite the ErrorCode if BIOS writes a non-zero value.

The software error codes generated by the MPA are defined in MPA Error Codes. The BIOS error
codes are defined as follows:

 RS_PREMEM_OTHER 0x10

 RS_PREMEM_NOMEM 0x11

 RS_PREMEM_SYS_NOT_CAPABLE 0x12

 RS_PREMEM_NO_VALID_PRMRR 0x13

 RS_PREMEM_HW_NOT_CAPABLE 0x14

 RS_PREMEM_TME_DISABLED 0x15

 RS_PREMEM_SGX_DISABLED 0x16

 RS_PREMEM_INVALID_PRRMR_SIZE 0x17

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 26 -

 RS_PREMEM_PRMRR_NOT_SECURED 0x18

 RS_PREMEM_MEM_TOPOLOGY_ERR 0x19

 RS_POSTMEM_OTHER 0x20

 RS_POSTMEM_NOMEM 0x21

 RS_POSTMEM_SYSHOST_NOTFOUND 0x22

 RS_POSTMEM_MMAP_HOST_NOTFOUND 0x23

 RS_POSTMEM_VSPPI_NOTFOUND 0x24

 RS_POSTMEM_MRCHCSPPI_NOTFOUND 0x25

 RS_POSTMEM_SVN_ERR 0x26

 RS_POSTMEM_REGVARS_ERR 0x27

 RS_POSTMEM_KEYBLOBS_RES_ERR 0x28

 RS_POSTMEM_PRID_UNLOCK_ERR 0x29

 RS_POSTMEM_DETERMINE_BOOT_ERR 0x2A

 RS_POSTMEM_FIRSTBOOT_ERR 0x2B

 RS_POSTMEM_WARMRESET_ERR 0x2C

 RS_LATEINIT_OTHER 0x30

 RS_LATEINIT_TRIGCALLBACK_ERR 0x31

 RS_LATEINIT_HOBLIST_NOTFOUND 0x32

 RS_LATEINIT_MPSVC_ERR 0x33

 RS_LATEINIT_INITDATAHOB_RES 0x34

 RS_LATEINIT_UPDTCAPAB_ERR 0x35

 RS_LATEINIT_UPDTPRMRR_ERR 0x36

 RS_LATEINIT_CRDIMM_ERR 0x37

 RS_LATEINIT_UPDTLEWR_ERR 0x38

 RS_LATEINIT_SYS_NOT_CAPABLE 0x39

 RS_LATEINIT_SGX_DISABLED 0x3A

 RS_LATEINIT_FACTORY_RESET_ERR 0x3B

 RS_LATEINIT_NVSAREA_ERR 0x3C

 RS_LATEINIT_GET_NVVAR_ERR 0x3D

 RS_LATEINIT_EXPOSE_PROTO_ERR 0x3E

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 27 -

 RS_LATEINIT_LOCKVARS_ERR 0x3F

 RS_LATEINIT_VAR_ROTO_ERR 0x40

 RS_LATEINIT_CALLBACK_OTHER 0x50

 RS_LATEINIT_CALLBACK_NOMEM 0x51

 RS_LATEINIT_CALLBACK_BIOSPARAM_ERR 0x52

 RS_LATEINIT_CALLBACK_MICROCODE_LAUNCH_ERR 0x53

 RS_LATEINIT_CALLBACK_UPDT_TIMESTMP_ERR 0x54

 RS_LATEINIT_CALLBACK_UPDT_PKG_INFO_ERR 0x55

 RS_LATEINIT_CALLBACK_LAUNCHCTRL_ERR 0x56

 RS_LATEINIT_CALLBACK_UPDT_KEYBLOBS_ERR 0x57

 RS_LATEINIT_CALLBACK_TCBRECOVERY_ERR 0x58

 RS_LATEINIT_CALLBACK_STORPLATMANIF_ERR 0x59

 RS_LATEINIT_CALLBACK_LEGACYVARS_ERR 0x5A

 RS_LATEINIT_CALLBACK_REGSTATE_VAR_ERR 0x5B

3.3.4. SGX Status

The possible values reported for SGX on multi-package platforms are:
• SGX is enabled
• A reboot is required to finish enabling SGX
• SGX is disabled and a Software Control Interface is not available to enable it
• SGX is not enabled on this platform. More details are unavailable
• SGX is disabled, but can be enabled manually in the BIOS setup
• SGX is not supported by this CPU

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 28 -

4.Multi-Package Registration Libraries

4.1. SGX Multi-Package UEFI Variables Access Library

This library provides a set of C-like APIs that allow applications to interface with the multi-package
SGX UEFI variables used to communicate with BIOS. The Multi-Package Registration Agent, the PCK
Cert ID Retrieval Tool and the Multi-Package Management Tool all link to this library. You can
develop your own tools using this library to suit your SGX attestation infrastructure.

4.1.1. Initialize the Multi-Package UEFI Library (MP UEFI Library)

Description

Provides the UEFI variable directory path and the logging level that the UEFI library uses in the
other functions. Only the Linux version of the library uses the ‘path’ input, and it is ignored in the
Windows version of the library. You must call this function before using the other APIs provided by
this library.

Syntax
MpResult mp_uefi_init(

const char* path,
const LogLevel logLevel);

Parameters

path [In]
Linux absolute path to the UEFI variables directory. For Linux, if the value is NULL, the
default UEFI path of /sys/firmware/efi/efivars/ is used. For Windows, this parameter
is ignored.

logLevel [In]
Set the logging level. Logging messages default to stdout. You can create an auxiliary
logging function and link with the MP UEFI Library to change the output location.

▪ Linux:
void log_message_aux(

LogLevel level,
const char *format,
va_list argptr)

▪ Windows:
void uefi_log_message_aux(

LogLevel glog_level,
LogLevel level,
const char* format,
 ...)

Return Values

MP_SUCCESS:
The MP UEFI library successfully initialized.

MP_REDUNDANT_OPERATION:

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 29 -

The MP UEFI library was already initialized.

MP_MEM_ERROR:
Failed to initialize the MP UEFI library.

4.1.2. Retrieve the Registration Request Type

Description
Returns the type of data structure in the SgxRegistrationServerRequest UEFI variable. Currently,
the library only supports platform manifest and add package structures.

Syntax
MpResult mp_uefi_get_request_type(

MpRequestType *type);

 Parameters

type [Out]
Holds the pending request type or MP_REQ_NONE.

Return Values

MP_SUCCESS:
The API either found the SgxRegistrationServerRequest UEFI variable and ‘type’
contains the request type or the API could not find the SgxRegistrationServerRequest
UEFI variable and ‘type’ contains MP_REQ_NONE.

MP_INVALID_PARAMETER:
The parameter type is NULL.

MP_UEFI_INTERNAL_ERROR:
The request structure header in the SgxRegistrationServerRequest UEFI variable has an
invalid version, invalid size, or unrecognized GUID.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.3. Retrieve the BIOS Registration Server Request

Description
Returns the contents of the SgxRegistrationServerRequest UEFI variable. It also returns the
required size of the ‘request’ structure in the parameter ‘request_size’ if you pass in NULL for the
‘request’ parameter.

Syntax

MpResult mp_uefi_get_request(
uint8_t *request,
uint16_t *request_size);

 Parameters

request [Out]

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 30 -

Holds the request buffer to be populated. When this value is NULL but ‘request_size’ is
not NULL, the API will return the size of the request in the
SgxRegistrationServerRequest UEFI variable in ‘request_size’.

request_size [In/Out]
If ‘request’ is not NULL, it contains the size in bytes of buffer pointed to by ‘request’.
Upon a successful execution, the API sets it to the number of bytes written to ‘request’.
If ‘request’ is NULL or the inputted ‘request_size’ is too small to contain the request

(return value is MP_USER_INSUFFICIENT_MEM), the API sets it to the number of bytes
required to contain the ‘request’ data.
Must not be NULL.

Return Values

MP_SUCCESS:
Successfully read the contents of the SgxRegistrationServerRequest UEFI variable if
‘request’ is not NULL or ‘request_size’ contains the required buffer size when ‘request’ is
NULL.

MP_INVALID_PARAMETER:
The parameter ‘request_size’ is NULL.

MP_NO_PENDING_DATA:
The API could not find the SgxRegistrationServerRequest UEFI variable.

MP_USER_INSUFFICIENT_MEM:
The size of the request exceeds the size of the inputted ‘request’.

MP_UEFI_INTERNAL_ERROR:
The request structure header in the SgxRegistrationServerRequest UEFI variable has an
invalid version or invalid size.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.4. Provide to BIOS the Registration Server Response

Description
The Registration Service may generate responses to the data provided in the
SgxRegistrationServerRequest UEFI variable. This API allows software to provide those server
responses to BIOS via the SgxRegistrationServerResponse UEFI variable. Currently, only the Add
Package (Replace Package) boot flow generates a response data from the Registration Service.
If the SgxRegistrationServerResponse UEFI variable is not already available, this API creates it.

Syntax
MpResult mp_uefi_set_server_response(

const uint8_t *response,
uint16_t *response_size);

Parameters

response [In]

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 31 -

Contains the response from the registration authority service.
response_size [In]

Size of response buffer in bytes.

Return Values

MP_SUCCESS:
Successfully wrote the inputted data to SgxRegistrationServerResponse UEFI variable.

MP_INVALID_PARAMETER:
Either ‘response’ or ‘response_size’ is NULL.

MP_UEFI_INTERNAL_ERROR:
Error encountered when writing to the UEFI variable.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.5. Retrieve Platform Information from BIOS

Description
This API reads data from the SgxRegistrationPackageInfo UEFI variable. Currently, BIOS uses this
variable to provide software with the key blobs generated for each CPU package. The platform
owner needs to enable a BIOS configuration (‘SGX Package Info In-band Access’) before it provides
this information. This data is not provided to the software by default.

Syntax
MpResult mp_uefi_get_key_blobs(

 uint8_t *blobs,
 uint16_t blobs_size);

Parameters

blobs [Out]
Holds the package info buffer to be populated. When this value is NULL but ‘blobs_size’
is not NULL, the API returns the size of the data in the SgxRegistrationPackageInfo UEFI
variable in ‘blobs_size’.

blobs_size [In/Out]
If ‘blobs’ is not NULL, it contains the size in bytes of the buffer pointed to by ‘blobs’.
Upon a successful execution, the API sets it to the number of bytes written to the ‘blobs’
buffer.
If ‘blobs’ is NULL or the inputted ‘blobs_size’ is too small to contain the package info

data (return value is MP_USER_INSUFFICIENT_MEM), the API sets it to the number of
bytes required to contain the package info data.
Must not be NULL.

Return Values

MP_SUCCESS:

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 32 -

Successfully read the contents of the SgxRegistrationPackageInfo UEFI variable if ‘blobs’
is not NULL or ‘blobs_size’ contains the required buffer size when ‘blobs’ is NULL.

MP_INVALID_PARAMETER:
The parameter ‘blobs_size’ is NULL.

MP_UEFI_INTERNAL_ERROR:
The request structure header in the SgxRegistrationPackageInfo UEFI variable has an
invalid version or invalid size.

MP_NO_PENDING_DATA:
SgxRegistrationPackageInfo UEFI variable is not provided by BIOS.

MP_USER_INSUFFICIENT_MEM:
The size of the package info exceeds the size of the inputted ‘blobs’.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.6. Retrieve Registration Status

Description
This API reads the SgxRegistrationStatus UEFI variable and returns the registration, package info,
and error code information.

Syntax
MpResult mp_uefi_get_registration_status(

 MpRegistrationStatus *status);

Parameters

status [Out]
Holds the registration status. Must not be NULL.

Return Values

MP_SUCCESS:
Successfully read the SgxRegistrationStatus UEFI variable.

MP_INVALID_PARAMETER:
The parameter ‘status’ is NULL.

MP_UEFI_INTERNAL_ERROR:
The request structure header in the SgxRegistrationStatus UEFI variable has an invalid
version, invalid size or the variable was not found.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.7. Set the Registration Status

Description
This API allows to write to the SgxRegistrationStatus UEFI variable. This variable can only be
written under certain circumstances. See the definition of SgxRegistrationStatus UEFI variable for

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 33 -

more information. You can use this API to modify the registration and package info complete bits.
It also allows to set an error code that any SW encountered during processing the data provided by
BIOS or the registration service infrastructure. This API overwrites the contents of the UEFI
variable.

Syntax
MpResult mp_uefi_set_registration_status(

 MpRegistrationStatus *status);

Parameters

status [In]
Holds the desired registration status.

Return Values

MP_SUCCESS:
Successfully wrote the inputted data to the SgxRegistrationStatus UEFI variable.

MP_INVALID_PARAMETER:
The parameter ‘status’ is NULL.

MP_UEFI_INTERNAL_ERROR:
Encountered an error while writing the SgxRegistrationStatus UEFI variable. Check logs
for more information.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.8. Retrieve the Registration Service Configuration

Description
This API reads the SgxRegistrationConfiguration UEFI variable. This variable contains the
information that the software uses for contacting the registration infrastructure services.

Syntax
MpResult mp_uefi_get_registration_server_info(

uint16_t flags,
string *server_address,
uint8_t *server_id,
uint16_t *server_id_size);

Parameters

flags [Out]
Holds the retrieved registration flags in the SgxRegistrationConfiguration UEFI variable.

server_address [Out]
Holds the registration server address.

server_id [Out]
Address of server_id buffer to be populated (SgxRegistrationServerID).

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 34 -

server_id_size [In/Out]
If both ‘server_id’ and ‘server_id_size’ are not NULL, it contains the size in bytes of the
buffer pointed to by ‘server_id’. Upon a successful execution, the API sets it to the
number of bytes written to the ‘server_id’ buffer. If the inputted ‘server_id_size’ not
NULL but the number of bytes is too small to contain the server_id (return value is

MP_USER_INSUFFICIENT_MEM), the API sets it to the number of bytes required to
contain the server id data.
If ‘server_id’ is NULL and ‘server_id_size’ is not NULL, the API sets it to the number of
bytes required to contain the server id data.
If ‘server_id_size’ is NULL, no ‘server_id’ information is returned.

Return Values

MP_SUCCESS:
Successfully read the contents of the SgxRegistrationConfiguration UEFI variable.

MP_INVALID_PARAMETER:
Either ‘flags’ or ‘response_size’ is NULL.
The version of the SgxRegistrationServerInfo in the SgxRegistrationConfiguration UEFI
variable is not supported.

MP_USER_INSUFFICIENT_MEM:
The size of the server id read exceeds the size of the inputted ‘server_id’.

MP_UEFI_INTERNAL_ERROR:
The request structure header in the SgxRegistrationConfiguration UEFI variable has an
invalid version or the variable was not found.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.9. Set the Registration Service Information

Description
This API allows software to modify the registration authority service information in the
SgxRegistrationConfiguration UEFI variable. This includes the registration authority service URL
and the SgxRegistrationServerInfo. This UEFI variable is only writable when SGX is disabled. It first
reads the UEFI variable then modifies the contents and writes it back. The URL is optional and
keeps the existing value, but the server_id is not optional.

Syntax
MpResult mp_uefi_set_registration_server_info(

const uint16_t flags,
const string *server_address,
const uint8_t *server_id,
const uint16_t server_id_size);

Parameters

flags [In]
Holds the registration flags to write to the SgxRegistrationConfiguration UEFI variable.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 35 -

server_address [In]
Holds the registration server address.

server_id [In]
Address of SgxRegistrationServerID buffer to be written.

server_id_size [In]
Size in bytes of the data stored in the ‘server_id’ buffer.

Return Values

MP_SUCCESS:
Successfully wrote the inputted data to the SgxRegistrationConfiguration UEFI variable.

MP_INVALID_PARAMETER:
The ‘server_id’ parameter is NULL, the size of the URL string is too long, or the URL is an
invalid value.

MP_UEFI_INTERNAL_ERROR:
The request structure header in the SgxRegistrationConfiguration UEFI variable has an
invalid version, or the variable was not found.

MP_UNEXPECTED_ERROR:
The API encountered an unexpected error. Check logs for more information.

MP_MEM_ERROR:
Insufficient memory

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.1.10. Exit the Multi-Package UEFI Library

Description
Free any resources used by the MP UEFI Library.

Syntax
MpResult mp_uefi_terminate();

Parameters

 None

Return Values

MP_SUCCESS:
Successfully terminated the MP UEFI library.

MP_REDUNDANT_OPERATION:
The MP UEFI library was not initialized or has been terminated.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 36 -

4.2. SGX Multi-Package Registration Service Network Library (MP Network Library)

This library provides a set of C-like APIs that allows applications to communicate with the REST
APIs defined by the Intel® SGX Registration Service APIs. The Multi-Package Registration Agent
links to this library. You can develop your own tools using this library to suit your SGX attestation
infrastructure.

4.2.1. Initialize the Multi-Package Network Library

Description

Provides the configuration data needed by the library to communicate to the registration authority
service providing the REST APIs.

Syntax
MpResult mp_network_init(

const char *server_address,
const char *subscription_key,
const ProxyConf *proxy,
const LogLevel logLevel);

Parameters

server_address [In]
Server URL that exposes the REST APIs.

subscription_key [In]
Some REST APIs may require a subscription key. Currently, only the add package API
requires a subscription key.

proxy [In]
Desired proxy configurations of the platform communicating to the registration service.

logLevel [In]
Set the logging level. Logging messages default to stdout. You can create an auxiliary
logging function and link with the MP Network Library to change the output location.

▪ Linux:
void log_message_aux(

LogLevel level,
const char *format,
va_list argptr)

▪ Windows:
void uefi_log_message_aux(

LogLevel glog_level,
LogLevel level,
const char* format,
 ...)

Return Values

MP_SUCCESS:
Successfully initialized the network library.

MP_INVALID_PARAMETER:

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 37 -

Either the ‘server_address’, ‘subscription_key’ or the ‘proxy’ parameter is NULL
The size of the URL string is too long or the URL is an invalid value.

MP_REDUNDANT_OPERATION:
The MP Network library was already initialized.

MP_MEM_ERROR:
Failed to initialize the MP Network library.

4.2.2. Send a Request to the Registration Server

Description

Sends a supported request type to the registration service and returns the response.

Syntax
MpResult mp_send_binary_request(

const MpRequestType *request_type,
const uint8_t *request,
const uint16_t request_size,
const uint8_t *response,
const uint16_t *response_size,
HttpStatusCode *status_code,
RegistrationErrorcode *error_code);

Parameters

request_type [In]
The type of request to be sent. Currently, only the platform manifest and the add
package request types are supported.

request [In]
Request buffer to send to the service.

request_size [In]
Size in bytes of the ‘request’ buffer.

response [In/Out]
Buffer that contains the response from the service.

response_size [In]
Size in bytes of the ‘response’ buffer.

status_code [Out]
HTTPS status code returned by the service.

error_code [In]
The error code generated by the registration service. See the MPA_RS_* error codes
defined in MPA Error Codes.

Return Values

MP_SUCCESS:

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 38 -

Successfully sent the request.

MP_INVALID_PARAMETER:
Either the ‘request’, ‘response_size’, ‘status_code’ or the ‘error_code’ parameter is NULL.
The ‘response’ parameter is not NULL, but the ‘response_size’ value is 0.
The ‘request_size’ value is 0.
The ‘request_type’ value is not supported.
The ‘request_type’ is an add package, but the network library was not initialized with a
valid sized subscription key.

MP_NETWORK_ERROR:
Failed to set up the network connection, proxy or other failure sending request to the
server.

MP_UNEXPECTED_ERROR:
The API encountered an unexpected error. Check logs for more information.

MP_MEM_ERROR:
Error allocating memory.

MP_USER_INSUFFICIENT_MEM:
The ‘response_size’ parameter value is too small to contain the server response.

MP_NOT_INITIALIZED:
The MP UEFI library was not initialized.

4.2.3. Exit the Multi-Package Network Library

Description
Free any resources used by the MP Network Library.

Syntax
MpResult mp_uefi_terminate();

Parameters

 None

Return Values

MP_SUCCESS:
Successfully terminated the MP Network library.

MP_REDUNDANT_OPERATION:
The MP Network library was not initialized or has been terminated.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 39 -

A. Data Structures

A.1. Common Data Structures

/** Result codes returned by the API’s in the UEFI and Network libraries */
typedef enum {
 MP_SUCCESS = 0,
 MP_NO_PENDING_DATA = 1,
 MP_ALREADY_REGISTERED = 2,
 MP_MEM_ERROR = 3,
 MP_UEFI_INTERNAL_ERROR = 4,
 MP_USER_INSUFFICIENT_MEM = 5,
 MP_INVALID_PARAMETER = 6,
 MP_SGX_NOT_SUPPORTED = 7,
 MP_UNEXPECTED_ERROR = 8,
 MP_REDUNDANT_OPERATION = 9,
 MP_NETWORK_ERROR = 10,
 MP_NOT_INITIALIZED = 11,
 MP_INSUFFICIENT_PRIVILEGES = 12
} MpResult;

/** Supported logging levels */
typedef enum _LogLevel
{
 MP_REG_LOG_LEVEL_NONE = 0,
 MP_REG_LOG_LEVEL_FUNC = 1,
 MP_REG_LOG_LEVEL_ERROR = 2,
 MP_REG_LOG_LEVEL_INFO = 3,
 MP_REG_LOG_LEVEL_MAX_VALUE
} LogLevel;

/* Supported types of data structures in the SgxRegistrationServerRequest UEFI
variable */
typedef enum {
 MP_REQ_REGISTRATION = 0,
 MP_REQ_ADD_PACKAGE = 1,
 MP_REQ_NONE = 2
} MpRequestType;

/** These are the possible error codes reported by the agent in the
SgxRegsitrationStatus UEFI variable in the ErrorCode field */
typedef enum _RegistrationErrorCode
{
 MPA_SUCCESS = 0x00,
 MPA_AG_UNEXPECTED_ERROR = 0x80, ///< Unexpected agent internal error.
 MPA_AG_OUT_OF_MEMORY = 0x81, ///< Out-of-memory error.
 MPA_AG_NETWORK_ERROR = 0x82, ///< Proxy detection or network
 ///< communication error
 MPA_AG_INVALID_PARAMETER = 0x83, ///< Invalid Parameter passed in
 MPA_AG_INTERNAL_SERVER_ERROR = 0x84, ///< Internal server error occurred.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 40 -

 MPA_AG_SERVER_TIMEOUT = 0x85, ///< Server timeout reached
 MPA_AG_BIOS_PROTOCOL_ERROR = 0x86, ///< BIOS Protocol error

 /* Registration Server HTTP 400 Response Error details */
 MPA_RS_INVALID_REQUEST_SYNTAX = 0xA0, ///<The request could not be understood
 by the server due to malformed
 syntax.
 MPA_RS_PM_INVALID_REGISTRATION_SERVER = 0XA1 ///< RS rejected request because
 it is intended for
 different Registration
 Server (Registration Server
 Authentication Key
 mismatch).
 MPA_RS_INVALID_OR_REVOKED_PACKAGE = 0xA2, ///< RS rejected request due to
 invalid or revoked CPU
 package.
 MPA_RS_PACKAGE_NOT_FOUND = 0xA3, ///< RS rejected request as at least
 one of the CPU packages could not
 be recognized by the server.
 MPA_RS_PM_INCOMPATIBLE_PACKAGE = 0xA4, ///< RS rejected request as at least
 One of the CPU packages is
 incompatible with rest of the
 packages on the platform.
 MPA_RS_PM_INVALID_PLATFORM_MANIFEST = 0xA5, ///< RS rejected request due to
 invalid platform
 configuration.
 MPA_RS_AD_PLATFORM_NOT_FOUND = 0xA6, ///< RS rejected request as provided
 platform instance is not
 recognized by the server.
 MPA_RS_AD_INVALID_ADD_REQUEST = 0xA7, ///< RS rejected request as the Add
 Package payload was invalid.
 MPA_RS_UNKOWN_ERROR = 0xA8, ///< RS rejected request for unknown
 reason. Probably means software
 needs to be updated with newly
 defined RS errors
} RegistrationErrorCode;

A.2. Multi-Package UEFI Library Data Structures

/** Body definition of the SgxRegistrationStatus UEFI Variable*/
typedef struct {
 union {
 uint16_t status;
 struct {
 uint16_t registrationStatus:1;
 uint16_t packageInfoStatus:1;
 uint16_t reservedStatus:14;
 };
 };
 RegistrationErrorCode errorCode;
} MpRegistrationStatus;

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 41 -

A.3. Multi-package Network Library Data Structures

/** Proxy type definition specified in the configuration file and network library
initialization function. Initialize the Multi-Package Network Library */
typedef enum _ProxyType
{
 MP_REG_PROXY_TYPE_DEFAULT_PROXY = 0, ///< Use the configuration in your
 ///< operating system
 MP_REG_PROXY_TYPE_DIRECT_ACCESS = 1, ///< Direct access to the internet
 MP_REG_PROXY_TYPE_MANUAL_PROXY = 2, ///< Set the proxy URL directly
 MP_REG_PROXY_TYPE_MAX_VALUE
} ProxyType;

/** Expands the ProxyType structure with a URL to support
MP_REG_PROXY_TYPE_MANUAL_PROXY */
typedef struct _ProxyConf{
 ProxyType proxy_type;
 char proxy_url[MAX_PATH_SIZE];
} ProxyConf;

/** These are the possible HTTP status codes return from the registration service
*/
typedef enum _HttpResponseCode
{
 MPA_RS_PLATFORM_CREATED = 201, ///< 201 Operation successful - a new
 ///< platform instance has been registered
 ///< in the registration service’s
 ///< database.
 MPA_RS_PACKAGES_BEEN_ADDED = 200, ///< 200 Operation successful – packages
 ///< have been added to an existing
 ///< platform instance.
 MPA_RS_BAD_REQUEST = 400, ///< Invalid payload. The client should not
 ///< repeat the request without
 ///< modifications.
 MPA_RS_INTERNAL_SERVER_ERROR = 500, ///< Internal server error occurred.
 MPA_RS_SERVICE_UNAVAILABLE = 503, ///< Server is currently unable to process
 ///< the request. The client should try to
 ///< repeat its request after some time.
 MPA_RS_UNSUPPORTED_MEDIA_TYPE = 415, ///< MIME type specified in the request
 ///< is not supported by the server.
} HttpStatusCode;

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 42 -

B. BIOS Multi-Package UEFI Variables

The UEFI variables used for communication between BIOS and software enable a protocol to
control the availability of data structure on boot flows. The data provided by BIOS and the
registration authority service are considered privacy sensitive. They contain hardware identifiers
that a platform owner may want to restrict to software. For this reason, the protocol includes the
ability for software to indicate to BIOS that it finished processing the structures. This increases the
complexity of the UEFI protocol implementation. If a platform owner does not need to implement
the privacy protection provided by the protocol, they can consider simplifying the protocol and
always provide the structures to software as read only values, and BIOS does not use the ‘complete’
flags to remove the variables from a subsequent boot flow.

UEFI variable are not exposed to guest VMs by default – VMM must implement the exposure of the
variables to a guest VM. This may satisfy some platform owners that want to prevent the privacy
sensitive information from guest workloads.

B.1. SgxRegistrationConfiguration

BIOS creates this variable to communicate the registration authority service URL to software.
Software reads this variable when there is data in SgxRegistrationServerRequest and
SgxRegistrationStatus.SgxRegistrationComplete bit is 0. The platform owner must disable SGX to
allow software to write to this variable. When this variable is writeable by software, the software
can modify which registration authority service the platform to use. When the registration authority
service changes, any current platform registration is invalid. On writes to this variable, the BIOS
clears all platform registration data (KEY_BLOBS and PLATFORM_MANIFESTS). Any attempts to
write to this variable when it is read-only are ignored.

BIOS provides this variable to software on all boot flows.

The ‘Flags’ field contains a flag indicating when the platform owner allows the registration authority
service to store the platform keys. Software uses this flag to determine if direct or indirect
registration is enabled for the platform. The flag can be modified using the BIOS UI’s ‘SGX Auto MP
Registration’ knob.

 SgxRegistrationConfiguration
GUID 18b3bc81-e210-42b9-9ec8-2c5a7d4d89b6

Size 1514

Attributes Read-only when SGX is enabled. Read-Write when SGX is disabled.

Description BIOS creates this variable during all boot flows. Software can use it to modify
the registration authority service.

Contains the following fields:

Name Size Type Description

Version 2 LE
Integer

1

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 43 -

Size 2 LE
Integer

Size in bytes of data below

Flags 2 LE
Integer

BIT 0: RS Encrypted Keys
0: Registration Server
saves platform keys

1: Registration Server
does not save platform
keys

Bits 1:15: Reserved MBZ

SgxRegServerInfo 1514 Mix As defined in MP
SGX_REGISTRATION_SERVER_I
NFO

Note: The above data can be part of BIOS setup configuration variable

B.1.1. Header

The Header is the first field of multi-package data structures that is shared between
components.

Name Size Type Description

GUID 16 Byte
Array

GUID uniquely identifying the data structure.

SIZE 2 LE
Integer

Data structure size excluding the size of this header.

VERSION 2 LE
Integer

Structure version.

RESERVED 12 N/A Reserved: This field is 0.

B.1.2. PubKey

This structure represents an RSA3072 public key. It does not contain a HEADER since it is
never used as an “upper-layer” structure.

Name Size Type Description

MODULUS 384 LE Integer RSA key pair modulus (N)

PUBEXP 4 LE Integer RSA public exponent (E)

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 44 -

B.1.3. SGX Registration Server ID

This structure represents the identity of the registration authority service. BIOS provides it
to microcode so it can properly generate platform manifests and key blobs.

The self-signed REGISTRATION_SERVER_ID structure contains all the keys the registration
authority service uses for authorizing and decrypting the platform keys. The structure
includes two 3072-bit RSA keys. The Registration Server Authorization Key (RSAK) is used
to sign PLATFORM_MEMBERSHIP_CERTS and this structure. The Registration Service
Encryption Key (RSEK) is used by microcode for encrypting the platform keys in the platform
manifest.

Name Size
(bytes)

Data
Type

Description

Header 32 Mix GUID: 31A12AFE-0720-4EBC-B64E-C4B3C7F8BC0F.

Version: 1

RSNAME 32 Byte
Array

Registration Server self-selected public ID. Frequently the hash of
the server’s domain name or something to this effect

RSAK PubKey
(388)

Mix Registration Server’s RSA Authorization Key.

RSEK PubKey
(388)

Mix Registration Server’s RSA public key used to encrypt platform
keys.

Signature 384 LE
Integer

This entire structure is self-signed using the Registration Server’s
RSAK.

B.1.4. SGX Registration Server Info

This structure links the registration authority service URL with the signed
REGISTRATION_SERVER_ID structure.

Name Size (bytes) Data
Type

Description

HEADER 32 Mix GUID: 212FE183-6B1A-
42A1-A7A9-
DA3AB6B7BD02

Version: 1

URL_SIZE 2 LE
Integer

Number of bytes in the
URL.

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 45 -

URL 256 Byte
Array

ASCII representation of the
URL name. Does not
contain ‘\0’ NULL
terminator.

SgxRegistrationServerID sizeof
(SgxRegistrationServerID)

Mix Registration authority
services’s RSA public keys
and RSNAME

B.2. SGX Registration Server Request

BIOS exposes this variable when data needs to be sent to the registration authority service. Its
contents depend on the registration boot flow. For Initial Platform Establishment and TCB Recovery
boot flows, it contains the platform manifests. For the Add Package flow, it contains add package
structure. BIOS only generates this variable when there is data to send. The platform manifest and
add package structures contain privacy sensitive information and should only be exposed to software
until registration completes. Software indicates that registration is complete by setting the
SgxRegistrationStatus.SgxRegistrationComplete bit to 1. BIOS clears the
SgxRegistrationStatus.SgxRegistrationComplete bit to 0 when there is data to process, and software
expects this variable to be available. Software processes its contents and sets the
SgxRegistrationStatus.SgxRegistrationComplete bit to 1 to indicate whether the registration flow
completes successfully. Software also sets the SgxRegistrationStatus.SgxRegistrationComplete to 1
on terminal errors received from the server as an indication that no retries resolve the error. If the
registration does not complete and the software does not set the
SgxRegistrationStatus.SgxRegistrationComplete bit to 1, BIOS provides the same data in this variable
on the next boot for software to retry processing the data. Otherwise, BIOS does not present this
same data on a subsequent boot.

Any errors encountered by software are reported with an error code in
SgxRegistrationStatus.ErrorCode.

Name SgxRegistrationServerRequest

GUID 304e0796-d515-4698-ac6e-e76cb1a71c28

Size N/A

Attributes Read-Only

Description This variable is created by BIOS when SgxRegistrationStatus.SgxRegistrationComplete is 0.

Contains several self-signed data structures based on boot scenario.

Boot Scenario Contents Size Type Description

 Version 2 LE
Integer

2 – When content is
PLATFORM_MANIFST
1 or 2 – When content is
ADD_REQUEST

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 46 -

Size 2 LE
Integer

Size in bytes of data below (after
trimming)

Initial Platform
Establishment/TCB
Recovery

PLATFORM_MANIFEST Variable
(PM
Header
size will
always be
untrimmed
size)

Mix Contains 2 PLATFORM_MANIFESTS.
The first PLATFORM_MANIFEST is
from the IPE flow and the second is
for TCB Recovery (for the IPE boot
flow, the TCB Recovery
PLATFORM_MANIFEST will be all
zeros and will be trimmed the same
as the IPE PLATFORM_MANIFEST).

Data Header:
GUID: 178E874B-49E4-4AA5-99BB-
3057170925B4.
Version: 1

Add package ADD_REQUEST 211 Mix Contains the ADD_REQUEST
structure.

Data Header:
GUID: 696519ca-73c1-4785-a0f6-
4d289d37e995
Version: 1

B.3. SGX Registration Server Response

This variable is created by software when it successfully receives response data from the registration
authority service. Once successfully completed, the software sets the
SgxRegistrationStatus.SgxRegistrationComplete bit to 1 to indicate to BIOS that the software does
not require the same SGX Registration Server Request data on the subsequent boot flow. Currently,
the only response data from the registration authority service platform membership certificates in
response to a successful add request.

You shouls clear the data in this variable once it is consumed by BIOS to protect privacy sensitive
data on the next boot.

Name SgxRegistrationServerResponse

GUID 89589c7b-b2d9-4fc9-bcda-463b983b2fb7

Size 4 + 8*sizeof(PLATFORM_MEMBERSHIP_CERT)

Attributes Read-Write

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 47 -

Description This variable is created by OS/SW using data it received from the registration
authority server.

Contains response data from the registration server.

Name Size Type Description

Version 2 LE
Integer

1

Size 2 LE
Integer

Size in bytes of data below

Platform
Member
Ship
Certs[8]

8 *
sizeof(PLA
TFORM_ME
MBERSHIP_
CERT)

Mix Array of platform memberships certs
returned by the registration server.

Empty array elements are all 0x00s.

BIOS clears the data once it has read it.

B.4. SGX Registration Package Info

Currently, this variable contains the key blob structures for each package in the platform. BIOS only
generates this variable when new or modified key blobs are available. Microcode may generate new
key blobs in any boot flow. The software can use this variable to store the key blobs off-platform if
the key blobs stored by BIOS are lost.

BIOS clears the SgxRegistrationStatus.SgxPackageInfoComplete bit to 0 when key blobs are available.
The key blobs contain privacy sensitive information and should only be exposed until software reads
them. Once software reads the data out for backup storage, it should set
SgxRegistrationStatus.SgxPackageInfoComplete bit to 1 to indicate to BIOS that it should not expose
this same data on a subsequent boot flow. If the software does not set the
SgxRegistrationStatus.SgxPackageInfoComplete bit to 1, BIOS provides the same data in this variable
on the subsequent boot (unless microcode generates new key blobs).

By default, this UEFI variable is not provided to software when microcode generates new key blobs.
Platform owners that need to store key blobs off-platform must opt-in via a BIOS configuration. For
platforms that do not opt-in for key blob storage, BIOS always sets the
SgxRegistrationStatus.SgxPackageInfoComplete bit to 1 before booting to the OS.

To restore the key blobs, software can create/write to this UEFI variable so BIOS can use the key
blobs on the next boot. This variable is writeable only if SGX is disabled.

Name SgxRegistrationPackageInfo

GUID ac406deb-ab92-42d6-aff7-0d78e0826c68

Size 8*sizeof(KEY_BLOB)

Attributes Read-only when SGX enabled. Read-Write when SGX disabled

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 48 -

Description This variable is created by BIOS using data it received from microcode. It can
be created and written to by software when SGX is disabled.

Name Size Type Description

Version 2 LE
Integer

1

Size 2 LE
Integer

Size in bytes of data below

KEY_BLOB[8] 8 *
sizeof(KEY_BLOB)

Mix Array of KEY_BLOB
generated or modified by
the microcode loader.

Empty array elements are
all 0x00s.

B.5. SGX Registration Status

This variable is created by BIOS and is always available to software for reading on all boot flows
(including when SGX is disabled). When BIOS needs to communicate to the software that some action
needs to take place, BIOS resets one of the defined Status bits to 0. When software completes the
action, it can set the relevant status bit to 1 to prevent BIOS from requesting the same action on a
subsequent boot and to limit exposure of privacy sensitive data. When all valid status bits are set to
1, BIOS makes this variable read-only. Software can also use this variable to query the status of an
action on future boot flows, so the status bits need to be preserved by BIOS across boots (until a new
action is required). If one of the status bits remains 0 on a subsequent boot, BIOS provides the data
necessary to allow the software to retry that action.

BIOS communicates to software any errors that occurred during a boot flow by setting the Error Code
to a non-zero value (with the MSBit reset to 0). If BIOS reports an error, there is no action for software
to take. Software can also write to the Error Code when it encounters an error with the MSBit set to
1). To allow a software Error Code to persist across boot flows, BIOS should not overwrite a non-
zero software ErrorCode on a subsequent successful normal boot flow.

Name SgxRegistrationStatus

GUID f236c5dc-a491-4bbe-bcdd-88885770df45

Size 2
Attributes Read-Write then Read-only

Remote Attestation for Multi-Package Platforms using Intel® SGX
Datacenter Attestation Primitives (DCAP)

 - 49 -

Description
BIOS creates this variable whenever communication to the registration
authority service is required or whenever a key blob backup is required.

Name Size Type Description

Version 2 LE
Integer

1

Size 2 LE
Integer

Size in bytes of data below

Status 2 Little
Endian

BIT[0]: SgxRegistrationComplete

0: SGX Registration is in progress.
SgxRegistrationServerRequest is
accessible.

1: SGX Registration is complete.
SGXRegistrationRespons is available
when ErrorCode is 0.
SgxPlatformServerRequest is not
accessible on next boot.

BIT[1]: SgxRegistrationPackageInfo read
complete

0: RegistrationPackageInfo backup in
process.
SgxRegistrationPackageInfo
accessible.

1: RegistrationPackageInfo backup is
complete
SgxRegistrationPackageInfo is not
accessible on next boot.

BIT[15:2]: Reserved

Error
Code

1 N/A Registration Error Code.
• BIOS errors have MSBit reset.
• SW errors have MSBit set.

	Intel SGX MultiPackage DCAP Support
	2. Overview
	2.1. SGX Multi-Package Attestation Components
	2.1.1. Microcode
	2.1.2. BIOS
	2.1.3. Platform Software
	2.1.4. Registration Authority Service

	2.2. SGX Multi-Package States
	2.2.1. Initial Platform Establishment (IPE)
	2.2.2. Normal
	2.2.2.1. Microcode Downgrade
	2.2.2.2. Removing CPU Packages
	2.2.2.3. Re-arranging CPU Packages

	2.2.3. TCB Recovery (TR/TCB-R)
	2.2.4. Add Package (Replace Package)
	2.2.5. Retirement/Waterfall

	2.3. UEFI Variables and Tboot
	2.4. SGX Multi-Package Registration Modes
	2.4.1. Direct Registration
	2.4.2. Indirect Registration
	2.4.2.1. Intel® SGX Provisioning Certification Service (Intel® PCS)

	2.4.3. Registration Environments
	2.4.3.1. Single-Stage Registration
	2.4.3.2. Dual-Stage Registration

	3. Multi-Package Registration Platform Software Tools
	3.1. Multi-Package Registration Agent (MPA)
	3.1.1. Platform Manifest Handling
	3.1.2. Add Package Handling
	3.1.3. Configuration
	3.1.3.1. BIOS Registration Authority Service Configuration

	3.1.4. Error Codes

	3.2. PCK Cert ID Retrieval Tool
	3.2.1. Platform Manifest Handling
	3.2.2. Add Package Handling
	3.2.3. Configuration
	3.2.3.1. Outputting to a CSV File
	3.2.3.2. Outputting to the Reference Provisioning Certification Caching Service (PCCS)
	3.2.3.3. Platform Identity Without Enclave Loading

	3.3. Multi-Package Management Tool
	3.3.1. Changing the Registration Authority Service
	3.3.2. Handling Key Blobs
	3.3.3. Registration Error Codes
	3.3.4. SGX Status

	4. Multi-Package Registration Libraries
	4.1. SGX Multi-Package UEFI Variables Access Library
	4.1.1. Initialize the Multi-Package UEFI Library (MP UEFI Library)
	4.1.2. Retrieve the Registration Request Type
	4.1.3. Retrieve the BIOS Registration Server Request
	4.1.4. Provide to BIOS the Registration Server Response
	4.1.5. Retrieve Platform Information from BIOS
	4.1.6. Retrieve Registration Status
	4.1.7. Set the Registration Status
	4.1.8. Retrieve the Registration Service Configuration
	4.1.9. Set the Registration Service Information
	4.1.10. Exit the Multi-Package UEFI Library

	4.2. SGX Multi-Package Registration Service Network Library (MP Network Library)
	4.2.1. Initialize the Multi-Package Network Library
	4.2.2. Send a Request to the Registration Server
	4.2.3. Exit the Multi-Package Network Library

	A. Data Structures
	A.1. Common Data Structures
	A.2. Multi-Package UEFI Library Data Structures
	A.3. Multi-package Network Library Data Structures

	B. BIOS Multi-Package UEFI Variables
	B.1. SgxRegistrationConfiguration
	B.1.1. Header
	B.1.2. PubKey
	B.1.3. SGX Registration Server ID
	B.1.4. SGX Registration Server Info
	B.2. SGX Registration Server Request
	B.3. SGX Registration Server Response
	B.4. SGX Registration Package Info
	B.5. SGX Registration Status

