
Intel® Software Guard Extensions (Intel® SGX) SDK

for Linux* OS

Developer Reference

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 2 -

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual prop-
erty rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

This document contains information on products, services and/or processes in
development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, spe-
cifications and roadmaps.

The products and services described may contain defects or errors known as errata
which may cause deviations from published specifications. Current characterized
errata are available on request.

Intel technologies features and benefits depend on system configuration and may
require enabled hardware, software or service activation. Learn more at Intel.com, or
from the OEM or retailer.

Copies of documents which have an order number and are referenced in this doc-
ument may be obtained by calling 1-800-548-4725 or by visiting www.in-
tel.com/design/literature.htm.

Intel, the Intel logo, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation
in the U.S. and/or other countries.

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optim-
izations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel micro-
processors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets
covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

© Intel Corporation.

http://www.intel.com/design/literature.htm

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 3 -

This software and the related documents are Intel copyrighted materials, and
your use of them is governed by the express license under which they were
provided to you (License). Unless the License provides otherwise, you may not
use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express
or implied warranties, other than those that are expressly stated in the
License.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 4 -

Revision History

Revision Number Description Revision Date

1.5 Intel® SGX Linux 1.5 release May 2016

1.6 Intel® SGX Linux 1.6 release September
2016

1.7 Intel® SGX Linux 1.7 release December 2016

1.8 Intel® SGX Linux 1.8 release March 2017

1.9 Intel® SGX Linux 1.9 release July 2017

2.0 Intel® SGX Linux 2.0 release November
2017

2.1 Intel® SGX Linux 2.1 release December 2017

2.1.1 Intel® SGX Linux 2.1.1 release March 2018

2.1.2 Intel® SGX Linux 2.1.2 release March 2018

2.1.3 Intel® SGX Linux 2.1.3 release April 2018

2.2 Intel® SGX Linux 2.2 release July 2018

2.3 Intel® SGX Linux 2.3 release September
2018

2.4 Intel® SGX Linux 2.4 release November
2018

2.5 Intel® SGX Linux 2.5 release March 2019

2.6 Intel® SGX Linux 2.6 release June 2019

2.7 Intel® SGX Linux 2.7 release September
2019

2.7.1 Intel® SGX Linux 2.7.1 release November
2019

2.8 Intel® SGX Linux 2.8 release January 2020

2.9 Intel® SGX Linux 2.9 release March 2020

2.9.1 Intel® SGX Linux 2.9.1 release April 2020

2.10 Intel® SGX Linux 2.10 release June 2020

2.11 Intel® SGX Linux 2.11 release August 2020

2.12 Intel® SGX Linux 2.12 release November
2020

2.13 Intel® SGX Linux 2.13 release January 2021

2.14 Intel® SGX Linux 2.14 release June 2021

2.15 Intel® SGX Linux 2.15 release September
2021

2.15.1 Intel® SGX Linux 2.15.1 release November

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 5 -

2021

2.16 Intel® SGX Linux 2.16 release March 2022

2.17 Intel® SGX Linux 2.17 release June 2022

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 6 -

Introduction
Intel provides the Intel® Software Guard Extensions (Intel® SGX) SDK
Developer Reference for software developers who wish to harden their applic-
ation security using the Intel Software Guard Extensions technology.

This document covers an overview of the technology, tutorials, tools, sample
code as well as an API reference.

Intel® Software Guard Extensions SDK is a collection of APIs, sample source
code, libraries, and tools that enable the software developer to write and
debug Intel® Software Guard Extensions applications in C/C++ programming
language.

NOTE
Intel® Software Guard Extensions (Intel® SGX) technology is only available on
the 6th Generation Intel® Core(TM) Processor or newer.

Intel® Software Guard Extensions Technology Overview
Intel® Software Guard Extensions is an Intel technology whose objective is to
enable a high-level protection of secrets. It operates by allocating hardware-
protected memory where code and data reside. The protected memory area
is called an enclave. Data within the enclave memory can only be accessed by
the code that also resides within the enclave memory space. Enclave code can
be invoked via special instructions. An enclave can be built and loaded as a
shared object on Linux* OS.

NOTE:
The enclave file can be disassembled, so the algorithms used by the enclave
developer will not remain secret.

Intel® Software Guard Extensions technology has a hard limit on the protected
memory size, typically 64 MB or 128 MB. As a result, the number of active
enclaves (in memory) is limited. Depending on the memory footprint of each
enclave, use cases suggest that 5-20 enclaves can reside in memory sim-
ultaneously. Linux*, however, can increase the protected memory size through
paging.

Intel® Software Guard Extensions Security Properties

l Intel designs the Intel® Software Guard Extensions to protect against soft-
ware attacks:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 7 -

o The enclave memory cannot be read or written from outside the
enclave regardless of current privilege level and CPU mode
(ring3/user-mode, ring0/kernel-mode, SMM, VMM, or another
enclave). The abort page is returned in such conditions.

o An enclave can be created with a debug attribute that allows a
debugger to view its content. Production enclaves (non-debug) can-
not be debugged by software or hardware debuggers.

o The enclave environment cannot be entered via classic function
calls, jumps, register manipulation or stack manipulation. The only
way to call an enclave function is via a new instruction that per-
forms several protect checks. Classic function calls initiated by
enclave code to functions inside the enclave are allowed.

o CPU mode can only be 32 or 64 bit when executing enclave code.
Other CPU modes are not supported. An exception is raised in such
conditions.

l Intel designs the Intel® Software Guard Extensions to protect against
known hardware attacks:

o The enclave memory is encrypted using industry-standard encryp-
tion algorithms with replay protection.

o Tapping the memory or connecting the DRAM modules to another
system will only give access to encrypted data.

o The memory encryption key changes every power cycle randomly
(for example, boot/sleep/hibernate). The key is stored within the
CPU and it is not accessible.

o Intel® Software Guard Extensions is not designed to handle side
channel attacks or reverse engineering. It is up to the Intel® SGX
developers to build enclaves that are protected against these
types of attack.

Intel® Software Guard Extensions uses strong industry-standard algorithms for
signing enclaves. The signature of an enclave characterizes the content and
the layout of the enclave at build time. If the enclave’s content and layout are
not correct per the signature, then the enclave will fail to be initialized and,
hence, will not be executed. If an enclave is initialized, it should be identical to
the original enclave and will not be modified at runtime.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 8 -

Application Design Considerations
An Intel® Software Guard Extensions application design is different from non-
Intel® SGX application as it requires dividing the application into two logical
components:

l Trusted component. The code that accesses the secret resides here.
This component is also called an enclave. More than one enclave can
exist in an application.

l Untrusted component. The rest of the application including all its mod-
ules.1

The application writer should make the trusted part as small as possible. It is
suggested that enclave functionality should be limited to operate on the
secret data. A large enclave statistically has more bugs and (user created)
security holes than a small enclave.

The enclave code can leave the protected memory region and call functions in
the untrusted zone (by a special instruction). Reducing the enclave depend-
ency on untrusted code will also strengthen its protection against possible
attacks.

Embracing the above design considerations will improve protection as the
attack surface is minimized.

The application designer, as the first step to harnessing Intel® Software Guard
Extensions SDK in the application, must redesign or refactor the application to
fit these guidelines. This is accomplished by isolating the code module(s) that
access any secrets and then moving these modules to a separate pack-
age/library. The details of how to create such an enclave are detailed in the
tutorials section. You can also see the demonstrations on creating an enclave
in the sample code that are shipped with the Intel® Software Guard Extensions
SDK.

Terminology and Acronyms

AE Architectural enclaves. Enclaves that are part of the Intel® Soft-
ware Guard Extensions framework. They include the quoting

1From an enclave standpoint, the operating system and VMM are not trusted
components, either.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 9 -

enclave (QE), provisioning enclave (PvE), launch enclave (LE)).
Attestation Prove authenticity. In case of platform attestation, prove the

identity of the platform.
CA Certificate Authority.
ECALL Enclave call. A function call that enters the enclave.

ECF Enclave Configuration File.
ECDH Elliptic curve Diffie–Hellman.
EDL Enclave Definition Language.
Intel® EPID Intel® Enhanced Privacy ID.
FIPS Federal Information Processing Standards developed by

NIST for use in computer systems government-wide.
FIPS 140-2 Standard that defines security requirements for cryptographic

modules and is required for sales to the Federal Governments.
HSM Hardware Security Module.
Attestation
Service

Attestation Service for Intel® Software Guard Extensions.

ISV Independent Software Vendor.
KE Key Exchange.
LE Launch enclave, an architectural enclave from Intel, involved in

the licensing service.
Nonce An arbitrary number used only once to sign a cryptographic com-

munication.
OCALL Outside call. A function call that calls an untrusted function from

an enclave.
Intel® SGX
PSW

Platform Software for Intel® Software Guard Extensions.

PvE Provisioning enclave, an architectural enclave from Intel, involved
in the Intel® Enhanced Privacy ID (Intel® EPID) Provision service
to handle the provisioning protocol.

QE Quoting enclave, an architectural enclave from Intel, involved in
the quoting service.

Intel® SGX Intel® Software Guard Extensions.
SigRL Signature revocation list
SMK Session MAC key.
SP Service Provider.
SVN Security version number. Used to version security levels of both

hardware and software components of the Intel® Software Guard

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 10 -

Extensions framework.
TCB Trusted computing base. Portions of hardware and software that

are considered safe and uncompromised. A system protection is
improved if the TCB is as small as possible, making an attack
harder.

TCS Thread Control Structure.
TLS Thread Local Storage.
TLS Transport Layer Security.

tRTS Trusted Run Time System
uRTS Untrusted Run Time System
Intel® SGX
SSL

Intel® Software Guard Extensions SSL cryptographic library
based on the OpenSSL. Provides cryptographic services for
Intel® Software Guard Extensions enclave applications.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 11 -

Setting up an Intel® Software Guard Extensions Project
This topic introduces using the features of Intel® Software Guard Extensions
SDK to create and manage Intel® SGX application projects.

Creating Intel® Software Guard Extensions Projects
To create an Intel® Software Guard Extensions project on Linux* OS, you
should follow the directory structure and Makefiles from one of the sample
applications in the Intel® SGX SDK. In an Intel SGX project, you should normally
prepare the following files:

1. Enclave Definition Language (EDL) file - describes enclave trusted and
untrusted functions and types used in the function prototype. See
Enclave Definition Language Syntax for details.

2. Enclave Configuration File (ECF) - contains the information of the enclave
metadata. See Enclave Configuration File for details.

3. Signing key files - used to sign an enclave to produce a signature struc-
ture that contains enclave properties such as enclave measurement. See
Signing Key Files for details.

4. Application and enclave source code - the implementation of application
and enclave functions.

5. makefile - it performs the following steps:

1. Generates edger routines (see Edger8r Tool for details).
2. Builds the application and enclave.
3. Signs the enclave (see Enclave Signing Tool for details).

6. Linker script file - you should use the linker script to hide all unnecessary
symbols, and only export enclave_entry, g_global_data, and g_global_
data_sim.

Once you understand how an Intel SGX application is built, you may customize
the project setup according to your needs.

To develop an Intel SGX application, Intel® SGX SDK supports a few non-stand-
ard configurations, not present in other SDKs. Enclave Project Configurations
explains the various enclave project configurations as well as the cor-
responding Makefile options.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 12 -

Enclave Image Generation
An enclave image is a statically linked shared object under Linux OS, without
any external dependencies. You must follow the guidelines below to generate
a proper enclave image:

1. Link the tRTS with the --whole-archive option, so that the whole con-
tent of the trusted runtime library is included in the enclave;

2. For other libraries, you just need to pull the required symbols. For example,
if an enclave requires routines in the trusted standard C and seal libraries:

HW mode:

--start-group –lsgx_tstdc –lsgx_tservice -lsgx_tcrypto -
-end-group

Simulation mode:

--start-group –lsgx_tstdc –lsgx_tservice_sim -lsgx_
tcrypto --end-group

In addition, a linker script is also recommended to hide all unnecessary sym-
bols.

// file: enclave.lds

enclave.so

{

global:
enclave_entry;
g_global_data_sim;
g_peak_heap_used;
g_peak_rsrv_mem_committed;
local:
*;

};

The symbol enclave_entry is the entry point to the enclave. The symbol
g_global_data_sim comes from the tRTS simulation library and is
required to be exposed for running an enclave in the simulation mode since it
distinguishes between enclaves built to run on the simulator and on the hard-
ware. The sgx_emmt tool relies on the symbol g_peak_heap_used to
determine the size of the heap that the enclave uses and relies on the symbol
g_peak_rsrv_mem_committed to determine the size of the reserved
memory that the enclave uses. The symbol __ImageBase is used by tRTS to
compute the base address of the enclave.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 13 -

Assuming that you have a few object files to be linked into a target enclave,
use the command line similar to the following:

$ ld -o enclave.so file1.o file2.o \

-pie -eenclave_entry -nostdlib -nodefaultlibs –nostart-
files --no-undefined \

--whole-archive –lsgx_trts --no-whole-archive \

--start-group –lsgx_tstdc ––lsgx_tservice -lsgx_crypto -
-end-group \

-Bstatic -Bsymbolic --defsym=__ImageBase=0 --export-
dynamic \

--version-script=enclave.lds

You are also encouraged to help harden your enclaves, by passing one of the
following options to the linker, to put read-only non-executable sections in
your own segment:

ld.gold --rosegment

or,

-Wl,-fuse-ld=gold –Wl,--rosegment

Using Intel® Software Guard Extensions Eclipse* Plug-in
The Intel® Software Guard Extensions Eclipse* Plug-in helps the enclave
developer to maintain enclaves and untrusted related code inside Eclipse*
C/C++ projects.

To get more information on Intel® Software Guard Extensions Eclipse* Plug-in,
see Intel® Software Guard Extensions Eclipse* Plug-in Developer Guide from
the Eclipse Help content: Help > Help Contents > Intel® SGX Eclipse Plug-
in Developer Guide.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 14 -

Using Intel® Software Guard Extensions SDK Tools
This topic introduces how to use the following tools that the Intel® Software
Guard Extensions SDK provides:

l Edger8r Tool

Generates interfaces between the untrusted components and enclaves.

l Enclave Signing Tool

Generates the enclave metadata, which includes the enclave signature,
and adds such metadata to the enclave image.

l Enclave Debugger

Helps to debug an enclave.

l Enclave Memory Measurement Tool

Helps to measure the usage of protected memory by the enclave at
runtime.

l CPUSVN Configuration Tool

Helps to simulate the CPUSVN upgrade/downgrade scenario without
modifying the hardware.

Edger8r Tool
The Edger8r tool ships as part of the Intel® Software Guard Extensions SDK. It
generates edge routines by reading a user-provided Enclave Description Lan-
guage (EDL) file. These edge routines define the interface between the untrus-
ted application and the enclave. Normally, the tool runs automatically as part
of the enclave build process. However, an advanced enclave writer may invoke
the Edger8r manually.

When given an EDL file, for example, demo.edl, the Edger8r by default gen-
erates four files:

l demo_t.h – Contains prototype declarations for trusted proxies and
bridges.

l demo_t.c – Contains function definitions for trusted proxies and
bridges.

l demo_u.h – Contains prototype declarations for untrusted proxies and
bridges.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 15 -

l demo_u.c – Contains function definitions for untrusted proxies and
bridges.

Here is the command line description for the Edger8r tool:

Syntax:

sgx_edger8r [options] <.edl file> [another .edl file …]

Arguments:

[Options] Descriptions
--use-prefix Prefix the untrusted proxy with the enclave name.
--header-only Generate header files only.
--search-path
<path>

Specify the search path of EDL files.

--untrusted Generate untrusted proxy and bridge routines
only.

--trusted Generate trusted proxy and bridge routines only.
--untrusted-dir
<dir>

Specify the directory for saving the untrusted
code.

--trusted-dir <dir>Specify the directory for saving the trusted code.
--help Print help message showing the command line

and options.

If neither --untrusted nor --trusted is specified, the Edger8r generates
both.

Here, the path parameter has the same format as the PATH environment vari-
able, and the enclave name is the base file name of the EDL file (demo in this
case).

CAUTION:
The ISV must run the Edger8r tool in a protected malware-free environment
to ensure the integrity of the tool so that the generated code is not com-
promised. The ISV is ultimately responsible for the code contained in the
enclave and should review the code that the Edger8r tool generates.

Enclave Signing Tool
The Intel® Software Guard Extensions (Intel® SGX) SDK provides a tool named
sgx_sign for you to sign enclaves. In general, signing an enclave is a process
that involves producing a signature structure that contains enclave properties

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 16 -

such as the enclave measurement (see Enclave Signature Structure below).
Once an enclave is signed in such structure, the modifications to the enclave
file (such as code, data, signature, and so on) can be detected. The signing tool
also evaluates the enclave image for potential errors and warns you about
potential security hazards. sgx_sign is typically set up by one of the con-
figuration tools included in the Intel® SGX SDK and runs automatically at the
end of the build process. During the loading process, the signature is checked
to confirm that the enclave has not been tampered with and has been loaded
correctly. In addition, the signing tool can also be used to report metadata
information for a signed enclave and to generate the SIGStruct file needed to
add the enclave signer to the allowlist.

Table 1 Enclave Signature Structure

Section Name

Header

HEADERTYPE

HEADERLEN

HEADERVERSION

TYPE

MODVENDOR

DATE

SIZE

KEYSIZE

MODULUSSIZE

ENPONENTSIZE

SWDEFINED

RESERVED

Signature
MODULUS

EXPONENT

SIGNATURE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 17 -

Section Name

Body

MISCSELECT

MISCMASK

RESERVED

ISVFAMILYID

ATTRIBUTES

ATTRIBUTEMASK

ENCLAVEHASH

RESERVED

ISVEXTPRODID

ISVPRODID

ISVSVN

Buffer
RESERVED

Q1

Q2

Command-Line Syntax
To run sgx_sign, use the following command syntax:

sgx_sign <command> [args]

All valid commands are listed in the table below. See Enclave Signer Usage
Examples for more information.

Table 2 Signing Tool Commands

CommandDescription Arguments
sign Sign the enclave using the private key in one step. Required:

-enclave, -key,
-out

Optional:
-config,

-dumpfile,

-cssfile
gendata The first step of the 2-step signing process. Gen-

erate the enclave signing material to be signed by
an external tool. This step dumps the signing
material, which consists of the header and body
sections of the enclave signature structure (see

Required:
-enclave, -out

Optional:
-config

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 18 -

the Table Enclave Signature Structure in this
topic), into a file (256 bytes in total).

catsig The second step of the 2-step signing process.
Generate the signed enclave with the input sig-
nature and public key. The input signature is gen-
erated by an external tool based on the data
generated by the gendata command. At this
step, the signature and buffer sections are gen-
erated. The signature and buffer sections together
with the header and body sections complete the
enclave signature structure (see the Table Enclave
Signature Structure in this topic).

Required:
-enclave, -key,
-out, -sig,
-unsigned

Optional:
-config,

-dumpfile,

-cssfile

dump Get the metadata information for a signed enclave
file and dump the metadata to a file specified with
the -dumpfile option and the SIGSTRUCT to the
file specified by the -cssfile option.

Required:

-enclave,

-dumpfile

Optional:

-cssfile

All the valid command options are listed below:

Table 3 Signing Tool Arguments

Arguments Descriptions
-enclave <file> Specify the enclave file to be signed or already signed.

It is a required argument for the four commands.
-config <file> Specify the enclave configuration file

It is an invalid argument for the dump command and an
optional argument for the other three commands.

-out <file> Specify the output file.

It is required for the following three commands.

Command Description
sign The signed enclave file.
gendata The file with the enclave

signing material.
catsig The signed enclave file.

-key <file> Specify the signing key file. See File Formats for
detailed description.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 19 -

Command Description
sign Private key.
gendata Not applicable.
catsig Public key.

-sig <file> Specify the file containing the signature corresponding
to the enclave signing material.

Only valid for catsig command.
-unsigned
<file>

Specify the file containing the enclave signing material
generated by gendata.

Only valid for the catsig command.
-dumpfile Specify a file to dump metadata information.

It is a required argument for the dump command and
an optional argument for sign and catsig

-cssfile Specify a file to dump the SIGSTRUCT information.

It is an optional argument for the sign, catsig and
dump commands.

-ignore-rel-
error

By default, sgx_sign provides an error for enclaves
with text relocations. You can ignore the error and con-
tinue signing by providing this option. But it is recom-
mended that you eliminate the text relocations instead
of bypassing the error with this option.

-ignore-init-
sec-error

By default, sgx_sign provides an error for enclaves
with .init section. You can ignore the error and continue
signing by providing this option. But it is recommended
you eliminate the section instead of bypassing the
error with this option.

-resign By default, sgx_sign reports an error if an input enclave
has already been signed. You can force sgx_sign to
resign the enclave by providing this option

-version Print the version information and exit.
-help Print the help information and exit.

The arguments, including options and filenames, can be specified in any order.
Options are processed first, then filenames. Use one or more spaces or tabs to
separate arguments. Each option consists of an option identifier, a dash (-), fol-
lowed by the name of the option. The <file> parameter specifies the abso-
lute or relative path of a file.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 20 -

sgx_sign generates the output file and returns 0 for success. Otherwise, it
generates an error message and returns -1.

Enclave Signing Key Management
An enclave project supports different signing methods needed by ISVs during
the enclave development life cycle.

l Single-step method using the ISV’s test private key:

The signing tool supports a single-step signing process, which requires
the access to the signing key pair on the local build system. However,
there is a requirement that any enclave signing key added to the allowl-
ist must be managed in a hardware security module. Thus, the ISV’s test
private key stored in the build platform will not be added to the allowlist
and enclaves signed with this key can only be launched in debug or
prerelease mode. In this scenario, the ISV manages the signing key pair,
which could be generated by the ISV using his own means. Single-step
method is the default signing method for non-production enclave applic-
ations, which are created with the Intel SGX project debug and
prerelease profiles.

l 2-step method using an external signing tool:
1. First step: At the end of the enclave build process, the signing tool

generates the enclave signing material.

The ISV takes the enclave signing material file to an external sign-
ing platform/facility where the private key is stored, signs the sign-
ing material file, and takes the resulting signature file back to the
build platform.

2. Second step: The ISV runs the signing tool with the catsigcom-
mand providing the necessary information at the command line to
add the hash of the public key and signature to the enclave’s
metadata section.

The 2-step signing process protects the signing key in a separate facility.
Thus it is the default signing method for the Intel SGX project release
profile. This means it is the only method for signing production enclave
applications.

File Formats
There are several files with various formats followed by the different options.
The file format details are listed below.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 21 -

Table 4 Signing Tool File Formats

File Format Description
Enclave file Shared

Object
A standard Shared Object.

Signed
enclave file

Shared
Object

sgx_sign generates the signed enclave file , which
includes the signature, to the enclave file.

Configuration
file

XML See Enclave Configuration File.

Key file PEM Key file should follow the PEM format which contains an
unencrypted RSA 3072-bit key. The public exponent
must be 3.

Enclave hex
file

RAW A dump file of the enclave signing material data to be
signed with the private RSA key.

Signature file RAW A dump file of the signature generated at the ISV’s sign-
ing facility. The signature should follow the RSA-
PKCS1.5 padding scheme. The signature should be gen-
erated using the v1.5 version of the RSA scheme with
an SHA-256 message digest.

Metadata file RAW A dump file containing the SIGStruct metadata for the
signed enclave. This file is submitted when there is a
request for Intel to add a production enclave to the
allowlist.

Signing Key Files
The enclave signing tool only accepts key files in the PEM format and that are
unencrypted. When an enclave project is created for the first time, you have to
choose either using an already existing signing key or automatically generating
one key for you. When you choose to import a pre-existing key, ensure that
such key is in PEM format and unencrypted. If that is not the case, convert the
signing key to the format accepted by the Signing Tool first. For instance, the
following command converts an encrypted private key in PKCS#8/DER format
to unencrypted PEM format:

openssl pkcs8 –inform DER –in private_pkcs8.der –outform
PEM –out private_pkcs1.pem

Depending on the platform OS, the openssl* utility might be installed already
or it may be shipped with the Intel® SGX SDK.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 22 -

Enclave Signer Usage Examples
The following are typical examples for signing an enclave using the one-step
or the two-step method. When the private signing key is available at the build
platform, you may follow the one-step signing process to sign your enclave.
However, when the private key is only accessible in an isolated signing facility,
you must follow the two-step signing process described below.

l One-step signing process:
Signing an enclave using a private key available on the build system:

sgx_sign sign -enclave enclave.so -config config.xml
-out enclave_signed.so -key private.pem

l Two-step signing process:
Signing an enclave using a private key stored in an HSM, for instance:

1. Generate the enclave signing material.
sgx_sign gendata -enclave enclave.so -config con-
fig.xml -out enclave_sig.dat

2. At the signing facility, sign the file containing the enclave signing

material (enclave_sig.dat) and take the resulting signature file

(signature.dat) back to the build platform.

3. Sign the enclave using the signature file and public key.
sgx_sign catsig -enclave enclave.so -config con-
fig.xml -out enclave_signed.so -key public.pem
-sig signature.dat -unsigned enclave_sig.dat

The configuration file config.xml is optional. If you do not provide a con-
figuration file, the signing tool uses the default configuration values.

The following example illustrates generating a report of metadata information
for a signed enclave:

sgx_sign dump -enclave enclave_signed.so -dumpfile
metadata_info.txt

A single enclave signing tool is provided, which allows for operating with 32-
bit and 64-bit enclaves.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 23 -

OpenSSL* Examples
The following command lines are typical examples using OpenSSL*.

1. Generate a 3072-bit RSA private key. Use 3 as the public exponent
value.

openssl genrsa -out private_key.pem -3 3072

2. Produce the public part of a private RSA key.

openssl rsa -in private_key.pem -pubout -out public_
key.pem

3. Sign the file containing the enclave signing material.

openssl dgst -sha256 -out signature.dat -sign private_
key.pem -keyform PEM enclave_sig.dat

Enclave Debugger
You can leverage the helper script sgx-gdb to debug your enclave applic-
ations. To debug an enclave on a hardware platform, set the <Dis-
ableDebug> configuration parameter should to 0 in the enclave
configuration file config.xml, and the Debug parameter to 1 in the sgx_
create_enclave(…) that creates the enclave. Debugging an enclave is sim-
ilar to debugging a shared library. However, not all standard features are avail-
able to debug enclaves. The following table lists severalunsupported GDB
commands. sgx-gdb also supports measuring the enclave stack/heap usage
by the Enclave Memory Measurement Tool. See the Enclave Memory Meas-
urement Tool for additional information. Note that sgx-gdb does not support
debugging enclaves created from memory by sgx_create_enclave_
from_buffer_ex API.

Table 5 GDB Unsupported Commands

GDB CommandDescription
info sharedlibrary Does not show the status of the loaded enclave.

next/step Does not allows to execute the next/step outside the enclave from inside
the enclave. To go outside the enclave use the finish command.

call/print Does not support calling outside the enclave from within an enclave func-
tion, or calling inside the enclave from a function in the untrusted

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 24 -

domain.

charset Only supports the GDB default charset.

gcore Does not support debug enclave with the application dump file

Performance Measurement using Intel® VTune(TM) Amplifier
You can use the Intel® VTune™ Amplifier Application 2016 Update 2 and
higher to measure the performance of the Intel® Software Guard Extensions
(Intel® SGX) applications, including the enclave. The Intel® VTune Amplifier
application supports a new analysis type called SGX Hotspots that can be
used to profile Intel® SGX enclave applications. You can use the default set-
tings of the SGX Hotspots to profile the application and the enclave code.
The precise event based sampling (PEBS) helps profiling Intel® SGX enclave
code. You can add precise events (_PS events) to the collection to profile
enclave code. Non-precise events cannot help profiling Intel® SGX enclave
code.

You can use the Intel® VTune™ Amplifier to measure the performance of the
enclave code only when the enclave is launched as a debug enclave. To launch
as a debug enclave, pass a value of 1 as the second parameter to the sgx_
create_enclave function, which loads and initializes the enclave as shown
below. Use the pre-defined macro SGX_DEBUG_FLAG as the parameter which
is automatically set to 1 in DEBUG and PRE-RELEASE modes.

sgx_create_enclave(ENCLAVE_FILENAME, SGX_DEBUG_FLAG,
&token, &updated, &global_eid, NULL);

NOTE:
Only use the Intel® VTune™ Amplifier to measure the performance in the
DEBUG and PRE-RELEASE modes because SGX_DEBUG FLAG cannot be 1
when launching an enclave in the RELEASE configuration.

The Intel® VTune™ Amplifier provides two options to profile applications:

l Run the applications using the Intel® VTune™ Amplifier. If you use this
approach, no additional steps required.

l Attach to the running process or the enclave application. If you use this
approach, define the environment variable as follows:

l For 64bit:

INTEL_LIBITTNOTIFY64 = <VTune Installation
Dir>/lib64/runtime/ittnotify_collector.so

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 25 -

Once the enclave is loaded, the invoked instrumentation and tracing tech-
nology (ITT) API of the Intel® VTune™ Amplifier in the uRTS passes information
about the enclave to the Intel® VTune Amplifier and profiles the Intel® SGX
enclave applications. When you attach the Intel VTune Amplifier to the applic-
ation after invoking the ITT API of the Intel® VTune Amplifier, the module
information about the enclave is cached in the ITT dynamic library and is used
by the Intel® VTune Amplifier to attach to the process. The following table
describes different scenarios of how the Intel VTune Amplifier is used to pro-
file the enclave application:

Intel® VTune(TM)
Amplifier Invocation

Additional Con-
figuration

ITT API Res-
ult

uRTS Action

Launch the application
with the Intel® VTune
(TM) Amplifier

N/A Intel®
VTune(TM)
Amplifier is
profiling

Set the Debug OPTIN
bit and invoke the
Module mapping API.

Late attach before invok-
ing the ITT API for the
Intel® VTune(TM) Ampli-
fier profiling check in
sgx_cereate_
enclave

ITT environment
variable is set.

Intel®
VTune(TM)
Amplifier is
profiling

Set the Debug OPTIN
bit and invoke the
Module mapping API.

ITT environment
variable is not
set.

Intel®
VTune(TM)
Amplifier is
not profiling

Do not set the Debug
OPTIN bit and do not
invoke the Module
mapping API.

Even though the Intel®
VTune(TM) Amplifier
is running, it cannot
profile enclaves. You
need to set the envir-
onment variable.

Late attach after invok-
ing theITT API for the
Intel® VTune(TM) Ampli-
fier profiling check in
sgx_cereate_
enclave

ITT environment
variable is set.

Intel®
VTune(TM)
Amplifier is
profiling

Set the Debug OPTIN
bit and invoke the
Module mapping API.

The ITT dynamic lib-
rary caches the mod-
ule information and
provides it to the

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 26 -

Intel® VTune(TM)
Amplifier during
attaching to the pro-
cess.

ITT environment
variable is not
set.

Intel®
VTune(TM)
Amplifier is
not profiling

Do not set the Debug
OPTIN bit and do not
invoke the Module
mapping API.

Even though the Intel®
VTune(TM) Amplifier
is running, it cannot
profile enclaves. You
need to set the envir-
onment variable.

Launch the application
without the Intel® VTune
(TM) Amplifier

N/A Intel®
VTune(TM)
Amplifier is
not profiling

Do not set the Debug
OPTIN bit and do not
invoke the Module
mapping API.

Enclave Memory Measurement Tool
An enclave is an isolated environment. The Intel® Software Guard Extensions
SDK provides a tool called sgx_emmt to measure the real usage of protected
memory by the enclave at runtime.

Currently the enclave memory measurement tool provides the following func-
tions:

1. Get the stack peak usage value for the enclave.
2. Get the heap peak usage value for the enclave.
3. Get the reserved memory peak usage value for the enclave.
The tool reports the size of the memory usage in KB. Once you get accurate
memory usage information for your enclaves, you can rework the enclave con-
figuration file based on this information to make full use of the protected
memory. See Enclave Configuration File for details.

On Linux* OS, the enclave memory measurement capability is provided by the
helper script sgx-gdb. The sgx-gdb is a GDB extension for you to debug
your enclave applications. See Enclave Debugger for details.

To measure how much protected memory an enclave uses, you should lever-
age sgx-gdb to launch GDB with sgx_emmt enabled and load the test

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 27 -

application that is using the enclave. You may also attach the debugger to a
running Intel SGX application to measure the memory usage of the enclave.

The sgx-gdb provides three commands pertaining the sgx_emmt tool:

Table 6 Enclave Memory Measurement Tool Commands

Command Description
enable sgx_emmt Enable the enclave memory measurement tool.

disable sgx_emmt Disable the enclave memory measurement tool.

show sgx_emmt Show whether the enclave memory measurement tool is enabled or not.

Here are the typical steps necessary to collect an enclave’s memory usage
information:

1. Leverage sgx-gdb to start a GDB session.

2. Enable the enclave memory measurement function with enable sgx_
emmt.

3. Load and run the test application which is using the enclave.

NOTE:
To collect peak stack/heap/reserved memory usage for an enclave on a hard-
ware platform correctly, make sure the enclave meets the following require-
ments:

1. The enclave is debuggable. This means that the <DisableDebug> con-
figuration parameter in the enclave configuration file should be set to 0.

2. The enclave is launched in the debug mode. To launch the enclave in the
debug mode, set the debug flag to 1 when calling sgx_create_enclave to
load the enclave.

3. Export g_peak_heap_used and g_peak_rsrv_mem_committed in the
version script of the enclave.

4. Destroy the enclave by using thesgx_destroy_enclave API.

CPUSVN Configuration Tool
CPUSVN stands for Security Version Number of the CPU, which affects the key
derivation and report generation process. CPUSVN is not a numeric concept
and will be upgraded/downgraded along with the hardware upgrade/-
downgrade. To simulate the CPUSVN upgrade/downgrade without modifying
the hardware, the Intel® Software Guard Extensions SDK provides a CPUSVN

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 28 -

configuration tool for you to configure the CPUSVN. The CPUSVN con-
figuration tool is for Intel® SGX simulation mode only.

Command-Line Syntax

To run the Intel® SGX CPUSVN configuration tool, use the following syntax:

sgx_config_cpusvn [Command]

The valid commands are listed in the table below:

Table 7 CPUSVN Configuration Tool Commands

Command Description
-upgrade Simulate a CPUSVN upgrade.
-downgrade Simulate a CPUSVN downgrade.
-reset Restore the CPUSVN to its default value.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 29 -

Enclave Development Basics
This topic introduces the following enclave development basics:

l Writing Enclave Functions

l Calling Functions inside the Enclave

l Calling Functions outside the Enclave

l Linking Enclave with Libraries

l Linking Application with Untrusted Libraries

l Enclave Definition Language Syntax

l Loading and Unloading an Enclave

The typical enclave development process includes the following steps:

1. Define the interface between the untrusted application and the enclave
in the EDL file.

2. Implement the application and enclave functions.
3. Build the application and enclave. In the build process, Edger8r Tool gen-

erates trusted and untrusted proxy/bridge functions. Enclave Signing
Tool generates the metadata and signature for the enclave.

4. Run and debug the application in simulation and hardware modes. See
Enclave Debugger for more details.

5. Prepare the application and enclave for release.

Writing Enclave Functions
From an application perspective, making an enclave call (ECALL) appears as
any other function call when using the untrusted proxy function. Enclave func-
tions are plain C/C++ functions with several limitations.

The user can write enclave functions in C and C++ (native only). Other lan-
guages are not supported.

Enclave functions can rely on special versions of the C/C++ runtime libraries,
STL, synchronization and several other trusted libraries that are part of the
Intel® Software Guard Extensions SDK. These trusted libraries are specifically
designed to be used inside enclaves.

The user can write or use other trusted libraries, making sure the libraries fol-
low the same rules as the internal enclave functions:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 30 -

1. Enclave functions can’t use all the available 32-bit or 64-bit instructions.
To check a list of illegal instructions inside an enclave, see Intel® Soft-
ware Guard Extensions Programming Reference.

2. Enclave functions will only run in user mode (ring 3). Using instructions
requiring other CPU privileges will cause the enclave to fault.

3. Function calls within an enclave are possible if the called function is stat-
ically linked to the enclave (the function needs to be in the enclave
image file).Linux* Shared Objects are not supported.

CAUTION:
The enclave signing process will fail if the enclave image contains any unre-
solved dependencies at build time.

Calling functions outside the enclave is possible using what are called OCALLs.
OCALLs are explained in detail in the Calling Functions outside the Enclave sec-
tion.

Table 8 Summary of Intel® SGX Rules and Limitations

Feature Supported Comment
Languages Partially Native C/C++. Enclave interface functions are lim-

ited to C (no C++).
C/C++ calls to
other Shared
Objects

No Can be done by explicit external calls (OCALLs).

C/C++ calls to
System
provided
C/C++/STL
standard lib-
raries

No A trusted version of these libraries is supplied
with the Intel® Software Guard Extensions SDK
and they can be used instead.

OS API calls No Can be done by explicit external calls (OCALLs).
C++ frame-
works

No Including MFC*, QT*, Boost* (partially – as long as
Boost runtime is not used).

Call C++ class
methods

Yes Including C++ classes, static and inline functions.

Intrinsic func-
tions

Partially Supported only if they use supported instruc-
tions.

The allowed functions are included in the Intel®
Software Guard Extensions SDK.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 31 -

Inline assembly Partially Same as the intrinsic functions.
Template func-
tions

Partially Only supported in enclave internal functions

Ellipse (…) Partially Only supported in enclave internal functions
Varargs (va_
list)

Partially Only supported in enclave internal functions.

Synchronization Partially The Intel® Software Guard Extensions SDK
provides a collection of functions/objects for
synchronization: spin-lock, mutex, and condition
variable.

Threading sup-
port

Partially Creating threads inside the enclave is not sup-
ported. Threads that run inside the enclave are
created within the (untrusted) application. Spin-
locks, trusted mutex and condition variables API
can be used for thread synchronization inside the
enclave.

Thread Local
Storage (TLS)

Partially Only implicitly via __thread.

Dynamic
memory alloc-
ation

Yes Enclave memory is a limited resource. Maximum
heap size is set at enclave creation.

C++ Exceptions Yes Although they have an impact on performance.
SEH Exceptions No The Intel® Software Guard Extensions SDK

provides an API to allow you to register functions,
or exception handlers, to handle a limited set of
hardware exceptions. See Custom Exception
Handling for more details.

Signals No Signals are not supported inside an enclave.

Calling Functions inside the Enclave
After an enclave is loaded successfully, you get an enclave ID, which is
provided as a parameter when the ECALLs are performed. Optionally, OCALLs
can be performed within an ECALL. For example, assume that you need to com-
pute some secret inside an enclave, the EDL file might look like the following:

// demo.edl

enclave {

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 32 -

// Add your definition of "secret_t" here
trusted {

public void get_secret([out] secret_t* secret);
};
untrusted {

// This OCALL is for illustration purposes only.
// It should not be used in a real enclave,
// unless it is during the development phase
// for debugging purposes.
void dump_secret([in] const secret_t* secret);

};
};

With the above EDL, the sgx_edger8r will generate an untrusted proxy func-
tion for the ECALL and a trusted proxy function for the OCALL:

Untrusted proxy function (called by the application):

sgx_status_t get_secret(sgx_enclave_id_t eid, secret_t*
secret);

Trusted proxy function (called by the enclave):

sgx_status_t dump_secret(const secret_t* secret);

The generated untrusted proxy function will automatically call into the
enclave with the parameters to be passed to the real trusted function get_
secret inside the enclave. To initiate an ECALL in the application:

// An enclave call (ECALL) will happen here

secret_t secret;

sgx_status_t status = get_secret(eid, &secret);

The trusted functions inside the enclave can optionally do an OCALL to dump
the secret with the trusted proxy dump_secret. It will automatically call out
of the enclave with the given parameters to be received by the real untrusted
function dump_secret. The real untrusted function needs to be imple-
mented by the developer and linked with the application.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 33 -

Checking the Return Value
The trusted and untrusted proxy functions return a value of type sgx_
status_t. If the proxy function runs successfully, it will return SGX_
SUCCESS. Otherwise, it indicates a specific error described in Error Codes sec-
tion. You can refer to the sample code shipped with the SDK for examples of
proper error handling.

Calling Functions outside the Enclave
In some cases, the code within the enclave needs to call external functions
which reside in untrusted (unprotected) memory to use operating system cap-
abilities outside the enclave such as system calls, I/O operations, and so on.
This type of function call is named OCALL.

These functions need to be declared in the EDL file in the untrusted section.
See Enclave Definition Language Syntax for more details.

The enclave image is loaded very similarly to how Linux* OS loads shared
objects. The function address space of the application is shared with the
enclave so the enclave code can indirectly call functions linked with the applic-
ation that created the enclave. Calling functions from the application directly
is not permitted and will raise an exception at runtime.

CAUTION:
The wrapper functions copy the parameters from protected (enclave)
memory to unprotected memory as the external function cannot access pro-
tected memory regions. In particular, the OCALL parameters are copied into
the untrusted stack. Depending on the number of parameters, the OCALL may
cause a stack overrun in the untrusted domain. The exception that this event
will trigger will appear to come from the code that the sgx_eder8r generates
based on the enclave EDL file. However, the exception can be easily detected
using the debugger.

CAUTION:
The wrapper functions will copy buffers (memory referenced by pointers) only
if these pointers are assigned special attributes in the EDL file.

CAUTION:
Certain trusted libraries distributed with the Intel® Software Guard Extensions
SDK provide an API that internally makes OCALLs. Currently, the Intel® Soft-
ware Guard Extensions mutex, reader/writer lock, condition variable, and
CPUID APIs from libsgx_tstdc.a make OCALLs. Similarly, the trusted support

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 34 -

library libsgx_tservice.a, which provides services from the Platform Services
Enclave (PSE-Op), also makes OCALLs. Developers who use these APIs must
first import the needed OCALL functions from their corresponding EDL files.
Otherwise, developers will get a linker error when the enclave is built. See the
Importing EDL Libraries for details on how to import OCALL functions from a
trusted library EDL file.

CAUTION:
To help identify problems caused by missing imports, all OCALL functions
used in the Intel® Software Guard Extensions SDK have the suffix ocall. For
instance, the linker error below indicates that the enclave needs to import the
OCALLs sgx_thread_wait_untrusted_event_ocall() and sgx_
thread_set_untrusted_event_ocall() that are needed in
sethread_mutex.obj, which is part of libsgx_tstdc.a.

libsgx_tstdc.a(sethread_mutex.o): In function `sgx_
thread_mutex_lock':

sethread_mutex.cpp:109: undefined reference to `sgx_
thread_wait_untrusted_event_ocall'

libsgx_tstdc.a(sethread_mutex.o): In function `sgx_
thread_mutex_unlock':

sethread_mutex.cpp:213: undefined reference to `sgx_
thread_set_untrusted_event_ocall'

CAUTION:
Accessing protected memory from unprotected memory will result in abort
page semantics. This applies to all parts of the protected memory including
heap, stack, code and data.

Abort page semantics:

An attempt to read from a non-existent or disallowed resource returns all ones
for data (abort page). An attempt to write to a non-existent or disallowed phys-
ical resource is dropped. This behavior is unrelated to exception type abort
(the others being Fault and Trap).

OCALL functions have the following limitations/rules:

l OCALL functions must be C functions, or C++ functions with C linkage.

l Pointers that reference data within the enclave must be annotated with
pointer direction attributes in the EDL file. The wrapper function will

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 35 -

perform shallow copy on these pointers. See Pointers for more inform-
ation.

l Exceptions will not be caught within the enclave. The user must handle
them in the untrusted wrapper function.

l OCALLs cannot have an ellipse (…) or a va_list in their prototype.

Example 1: The definition of a simple OCALL function

Step 1 – Add a declaration for foo in the EDL file

// foo.edl

enclave {

untrusted {
[cdecl] void foo(int param);

};
};

Step 2 (optional but highly recommended) – write a trusted, user-friendly
wrapper. This function is part of the enclave's trusted code.

The wrapper function ocall_foo function will look like:

// enclave's trusted code

#include "foo_t.h"

void ocall_foo(int param)

{

// it is necessary to check the return value of foo()
if (foo(param) != SGX_SUCCESS)

abort();
}

Step 3 – write an untrusted foo function.

// untrusted code

void foo(int param)

{

// the implementation of foo
}

The sgx_edger8r will generate an untrusted bridge function which will call
the untrusted function foo automatically. This untrusted bridge and the tar-
get untrusted function are part of the application, not the enclave.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 36 -

Library Development for Enclaves
Trusted library is the term used to refer to a static library designed to be
linked with an enclave. The following list describes the features of trusted lib-
raries:

l Trusted libraries are components of an Intel® SGX-based solution. They
typically undergo a more rigorous threat evaluation and review process
than a regular static library.

l A trusted library is developed (or ported) with the specific purpose of
being used within an enclave. Therefore, it should not contain instruc-
tions that are not supported by the Intel® SGX architecture.

l A subset of the trusted library API may also be part of the enclave inter-
face. The trusted library interface that could be exposed to the untrus-
ted domain is defined in an EDL file. If present, this EDL file is a key
component of the trusted library.

l A trusted library may have to be shipped with an untrusted library. Func-
tions within the trusted library may make OCALLs outside the enclave. If
an external function that the trusted library uses is not provided by the
libraries available on the platform, the trusted library will require an
untrusted support library.

In summary, a trusted library, in addition to the .a file containing the trusted
code and data, may also include an .edl file as well as an untrusted .a file.

This topic describes the process of developing a trusted library and provides
an overview of the main steps necessary to build an enclave that uses such a
trusted library.

1. The ISV provides a trusted library including the trusted functions
(without any edge-routines) and, when necessary, an EDL file and an
untrusted support library. To develop a trusted library, an ISV should cre-
ate an enclave project and choose the library option in the Eclipse plug-
in. This ensures the library is built with the appropriate settings. The
ISV might delete the EDL file from the project if the trusted library only
provides an interface to be invoked within an enclave. The ISV should
create a standard static library project for the untrusted support library,
if required.

2. Add a “from/import” statement with the library EDL file path and name
to the enclave EDL file. The import statement indicates which trusted

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 37 -

functions (ECALLs) from the library may be called from outside the
enclave and which untrusted functions (OCALLs) are called from within
the trusted library. You may import all ECALLs and OCALLs from the trus-
ted library or select a specific subset of them.

A library EDL file may import additional library EDL files building a hier-
archical structure. For additional details, See Importing EDL Libraries.

3. During the enclave build process, the sgx_edger8r generates
proxy/bridge code for all the trusted and untrusted functions. The gen-
erated code accounts for the functions declared in the enclave EDL file
as well as any imported trusted library EDL file.

4. The trusted library and trusted proxy/bridge functions are linked to the
enclave code.

NOTE:
If you use the wildcard option to import a trusted library, the resulting
enclave contains the trusted bridge functions for all ECALLs and their cor-
responding implementations. The linker will not be able to optimize this
code out.

5. The Intel® SGX application is linked to the untrusted proxy/bridge code.
Similarly, when the wildcard import option is used, the untrusted bridge
functions for all the OCALLs will be linked in.

Avoiding Name Collisions
An application may be designed to work with multiple enclaves. In this scen-
ario, each enclave would still be an independent compilation unit resulting in a
separate SO file.

Enclaves, like regular SO files, should provide a unique interface to avoid name
collisions when an untrusted application is linked with the edge-routines of
several enclaves. The sgx_edger8r prevents name collisions among OCALL
functions because it automatically prepends the enclave name to the names
of the untrusted bridge functions. However, ISVs must ensure the uniqueness
of the ECALL function names across enclaves to prevent collisions among
ECALL functions.

Despite having unique ECALL function names, name collision may also occur as
the result of developing an Intel® SGX application. This happens because an
enclave cannot import another SO file. When two enclaves import the same
ECALL function from a trusted library, the set of edge-routines for each

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 38 -

enclave will contain identical untrusted proxy functions and marshaling data
structures for the imported ECALL. Thus, the linker will emit an error when the
application is linked with these two sets of edge-routines. To build an applic-
ation with more than one enclave when these enclaves import the same ECALL
from a trusted library, ISVs have to:

1. Provide the --use-prefix option to sgx_edger8r, which will pre-
pend the enclave name to the untrusted proxy function names. For
instance, when an enclave uses the local attestation trusted library
sample code included in the Intel® SGX SDK, the enclave EDL file must
be parsed with the --use-prefix option to sgx_edger8r. See Local
Attestation for additional details.

2. Prefix all ECALLs in their untrusted code with the enclave name, match-
ing the new proxy function names.

Linking Enclave with Libraries
This topic introduces how to link an enclave with the following types of lib-
raries:

l Dynamic libraries

l Static Libraries

l Simulation Libraries

Dynamic Libraries
An enclave shared object must not depend on any dynamically linked library
in any way. The enclave loader has been intentionally designed to prohibit
dynamic linking of libraries within an enclave. The protection of an enclave is
dependent upon obtaining an accurate measurement of all code and data that
is placed into the enclave at load time; thus, dynamic linking would add com-
plexity without providing any benefit over static linking.

CAUTION:
The enclave image signing process will fail if the enclave file has any unre-
solved dependencies.

Static Libraries
You can link with static libraries as long as they do not have any dependencies.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 39 -

The Intel® Software Guard Extensions Software Development Kit (Intel® SGX
SDK) provides the following collection of trusted libraries.

Table 9 Trusted Libraries included in the Intel® SGX SDK

Name Description Comment
libsgx_trts.a Intel® SGX Runtime library Must link when

running in HW
mode

libsgx_trts_
sim.a

Intel® SGX Runtime library (simulation
mode)

Must link when
running in sim-
ulation mode

libsgx_
tstdc.a

Standard C library (math, string, and so on.) Must link

libsgx_
tcxx.a,

Standard C++ libraries, STL Optional

libsgx_tser-
vice.a

Data seal/unseal (encryption), trusted Archi-
tectural Enclaves support, Elliptic Curve Dif-
fie-Hellman (EC DH) library, and so on.

Must link when
using HW
mode

libsgx_tser-
vice_sim.a

The counterpart of libsgx_tservice.a for sim-
ulation mode

Must link when
using sim-
ulation mode

libsgx_
tcrypto.a

Cryptographic library Must link

libsgx_tkey_
exchange.a

Trusted key exchange library Optional

libsgx_tpro-
tected.a

Protected File System library Optional

libsgx_
tswitchless.a

Switchless Enclave Function Calls Optional

libsgx_pcl.a Enables Intel® SGX Protected Code Loader
for enclave code confidentiality

Optional

libsgx_
pclsim.a

Enables Intel® SGX Protected Code Loader
for enclave code confidentiality (simulation
mode)

Optional

Simulation Libraries
The Intel® SGX SDK provides simulation libraries to run application enclaves in
simulation mode (Intel® SGX hardware is not required). There are an untrusted

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 40 -

simulation library and a trusted simulation library. The untrusted simulation lib-
rary provides the functionality that the untrusted runtime library requires to
manage an enclave linked with the trusted simulation library, including the sim-
ulation of the Intel® SGX instructions executed outside the enclave: ECREATE,
EADD, EEXTEND, EINIT, EREMOVE, and EENTER. The trusted simulation library
is primarily responsible for simulating the Intel® SGX instructions that can
execute inside an enclave: EEXIT, EGETKEY, and EREPORT.

NOTE
Simulation mode does not require the Intel SGX support in the CPU. However,
the processor must support the Intel® Streaming SIMD Extensions 4.1 instruc-
tions at least.

Linking Application with Untrusted Libraries
The Intel® Software Guard Extensions SDK provides the following collection of
untrusted libraries.

Table 10 Untrusted Libraries included in the Intel® SGX SDK

Name Description Comment
libsgx_urts.so Provides functionality

for applications to
manage enclaves

Must link when running in HW
mode.

libsgx_urts.so is included in
Intel® SGX PSW

libsgx_urts_
sim.so

uRTS library used in
simulation mode

Dynamically linked

Provides both
enclaves and untrus-
ted applications
access to services
provided by the AEs

Must link when running in HW
mode.

is included in Intel® SGX PSW

libsgx_uae_ser-
vice_sim.so

Untrusted AE support
library used in sim-
ulation mode

Dynamically linked

libsgx_ukey_
exchange.a

Untrusted key
exchange library

Optional

libsgx_uae_ser-
vice.so

Provides both
enclaves and untrus-
ted applications
access to services

Must link when running in HW
mode. This library is being phased
out. We recommend start linking

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 41 -

provided by the AEs with the libraries below and cor-
responding header files based on
the services your application
needs.

libsgx_
launch.so

Provides applications
access to launch ser-
vices provided by the
AEs.

Must link when running in HW
mode.

libsgx_epid.so Provides applications
access to the
EPID provisioning ser-
vices provided by the
AEs.

Must link when running in HW
mode.

libsgx_plat-
form.so

Provides applications
access to platform ser-
vices (trusted time
and monotonic
counter).

Must link when running in HW
mode.

libsgx_quote_
ex.so

Must link when running in HW
mode.

Enclave Definition Language Syntax
Enclave Definition Language (EDL) files are meant to describe enclave trusted
and untrusted functions and types used in the function prototypes. Edger8r
Tool uses this file to create C wrapper functions for both enclave exports
(used by ECALLs) and imports (used by OCALLs).

EDL Template

enclave {

//Include files

//Import other edl files

//Data structure declarations to be used as parameters of the
//function prototypes in edl

trusted {
//Include header files if any
//Will be includedd in enclave_t.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 42 -

//Trusted function prototypes

};

untrusted {
//Include header files if any
//Will be included in enclave_u.hhead

//Untrusted function prototypes

};
};

The trusted block is optional only if it is used as a library EDL, and this EDL
would be imported by other EDL files. However the untrusted block is always
optional.

Every EDL file follows this generic format:

enclave {

// An EDL file can optionally import functions from
// other EDL files
from “other/file.edl” import foo, bar; // selective importing
from “another/file.edl” import *; // import all functions

// Include C headers, these headers will be included in the
// generated files for both trusted and untrusted routines
include "string.h"
include "mytypes.h"

// Type definitions (struct, union, enum), optional
struct mysecret {

int key;
const char* text;

};
enum boolean { FALSE = 0, TRUE = 1 };

// Export functions (ECALLs), optional for library EDLs
trusted {

//Include header files if any
//Will be included in enclave_t.h

//Trusted function prototypes

public void set_secret([in] struct mysecret* psecret);

void some_private_func(enum boolean b); // private ECALL
(non-root ECALL).

};

// Import functions (OCALLs), optional

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 43 -

untrusted {

//Include header files if any
//Will be included in enclave_u.h
//Will be inserted in untrusted header file
“untrusted.h”

//Untrusted function prototypes

// This OCALL is not allowed to make another ECALL.
void ocall_print();

// This OCALL can make an ECALL to function
// “some_private_func”.
int another_ocall([in] struct mysecret* psecret)

allow(some_private_func);
};

};

Comments
Both types of C/C++ comments are valid.

Example

enclave {

include “stdio.h” // include stdio header
include “../../util.h” /* this header defines some custom public
types */

};

Include Headers
Include C headers which define types (C structs, unions, typedefs, etc.); oth-
erwise auto generated code cannot be compiled if these types are referenced
in EDL. The included header file can be global or belong to trusted functions
or untrusted functions only.

A global included header file doesn’t mean that the same header file is
included in the enclave and untrusted application code. In the following
example, the enclave will use the stdio.h from the Intel® Software Guard
Extensions SDK. While the application code will use the stdio.h shipped
with the host compiler.

Using the include directive is convenient when developers are migrating
existing code to the Intel SGX technology, since data types are defined
already in this case. Similar to other IDL languages like Microsoft* interface
definition language (MIDL*) and CORBA* interface definition language (OMG-

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 44 -

IDL), a user can define data types inside the EDL file and sgx_edger8r will
generate a C header file with the data type definitions. For a list of supported
data types with in EDL, see Basic Types.

Syntax

include “filename.h”

Example

enclave {

include “stdio.h” // global headers
include “../../util.h”

trusted {
include “foo.h” // for trusted functions only

};

untrusted {
include “bar.h” // for untrusted functions only

};
};

Keywords
The identifiers listed in the following table are reserved for use as keywords of
the Enclave Definition Language.

Table 11 EDL Reserved Keywords

Data Types
char short int float double void
int8_t int16_t int32_t int64_t size_t wchar_t
uint8_t uint16_

t
uint32_t uint64_

t
unsigned struct

union enum long

Pointer Parameter Handling
in out user_

check
count size readonly

isptr string wstring

Others
enclave from import trusted untrusted include
public allow isary const propagate_

errno
transition_using_
threads

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 45 -

Basic Types
EDL supports the following basic types:

char, short, long, int, float, double, void, int8_t,
int16_t, int32_t, int64_t, size_t, wchar_t, uint8_t,
uint16_t, uint32_t, uint64_t, unsigned, struct, enum,
union.

It also supports long long and 64-bit long double.

Basic data types can be modified using the C modifiers:

const, *, [].

Additional types can be defined by including a C header file.

Pointers
EDL defines several attributes that can be used with pointers:

in, out, user_check, string, wstring, size, count,
isptr, readonly.

Each of them is explained in the following topics.

CAUTION:
The pointer attributes explained in this topic apply to ECALL and OCALL func-
tion parameters exclusively, not to the pointers returned by an ECALL or
OCALL function. Thus, pointers returned by an ECALL or OCALL function are
not checked by the edge-routines and must be verified by the enclave and
application code.

Pointer Handling

Pointers should be decorated with either a pointer direction attribute in, out
or a user_check attribute explicitly. The [in] and [out] serve as direction
attributes.

l [in] – when [in] is specified for a pointer argument, the parameter is
passed from the calling procedure to the called procedure. For an ECALL
the in parameter is passed from the application to the enclave, for an

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 46 -

OCALL the parameter is passed from the enclave to the application.
l [out] – when [out] is specified for a pointer argument, the parameter is

returned from the called procedure to the calling procedure. In an ECALL
function an out parameter is passed from the enclave to the application
and an OCALL function passes it from the application to the enclave.

l [in] and [out] attributes may be combined. In this case the parameter is
passed in both directions.

The direction attribute instructs the trusted edge-routines (trusted bridge
and trusted proxy) to copy the buffer pointed by the pointer. In order to copy
the buffer contents, the trusted edge-routines have to know how much data
needs to be copied. For this reason, the direction attribute is usually followed
by a size or count modifier. If neither of these is provided nor the pointer is
NULL, the trusted edge-routine assumes a count of one. When a buffer is
being copied, the trusted bridge must avoid overwriting enclave memory in
an ECALL and the trusted proxy must avoid leaking secrets in an OCALL. To
accomplish this goal, pointers passed as ECALL parameters must point to
untrusted memory and pointers passed as OCALL parameters must point to
trusted memory. If these conditions are not satisfied, the trusted bridge and
the trusted proxy will report an error at runtime, respectively, and the ECALL
and OCALL functions will not be executed.

You may use the direction attribute to trade protection for performance.
Otherwise, you must use the user_check attribute described below and val-
idate the data obtained from untrusted memory via pointers before using it,
since the memory a pointer points to could change unexpectedly because it is
stored in untrusted memory. However, the direction attribute does not help
with structures that contain pointers. In this scenario, you have to validate and
copy the buffer contents, recursively if needed, yourself. Alternatively, you can
define a structure that can be deep copied. See Structure Deep Copy for
more information.

Example

enclave {

trusted {

public void test_ecall_user_check([user_check] int * ptr);

public void test_ecall_in([in] int * ptr);

public void test_ecall_out([out] int * ptr);

public void test_ecall_in_out([in, out] int * ptr);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 47 -

};

untrusted {

void test_ocall_user_check([user_check] int * ptr);

void test_ocall_in([in] int * ptr);

void test_ocall_out([out] int * ptr);

void test_ocall_in_out([in, out] int * ptr);

};
};

Unsupported Syntax:

enclave {

trusted {

// Pointers without a direction attribute
// or ‘user_check’ are not allowed
public void test_ecall_not(int * ptr);

// Function pointers are not allowed
public void test_ecall_func([in]int (*func_ptr)());

};
};

In the example shown above:

For ECALL:

l [user_check]: In the function test_ecall_user_check, the pointer
ptr will not be verified; you should verify the pointer passed to the trus-
ted function. The buffer pointed to by ptr is not copied to inside buffer
either.

l [in]: In the function test_ecall_in, a buffer with the same size as the
data type of ‘ptr’(int) will be allocated inside the enclave. Content poin-
ted to by ptr, one integer value, will be copied into the new allocated
memory inside. Any changes performed inside the enclave will not be vis-
ible to the untrusted application.

l [out]: In the function test_ecall_out, a buffer with the same size as
the data type of ‘ptr’(int) will be allocated inside the enclave, but the
content pointed to by ptr, one integer value will not be copied. Instead,
it will be initialized to zero. After the trusted function returns, the buffer

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 48 -

inside the enclave will be copied to the outside buffer pointed to by
ptr.

l [in, out]: In the function test_ecall_in_out, a buffer with the same
size will be allocated inside the enclave, the content pointed to by ptr,
one integer value, will be copied to this buffer. After returning, the buffer
inside the enclave will be copied to the outside buffer.

For OCALL:

l [user_check]: In the function test_ocall_user_check, the pointer
ptr will not be verified; the buffer pointed to by ptr is not copied to an
outside buffer. Besides, the application cannot read/modify the memory
pointed to by ptr, if ptr points to enclave memory.

l [in]: In the function test_ocall_in, a buffer with the same size as the
data type of ptr(int) will be allocated in the 'application' side (untrusted
side). Content pointed to by ptr, one integer value, will be copied into
the newly allocated memory outside. Any changes performed by the
application will not be visible inside the enclave.

l [out]: In the function test_ocall_out, a buffer with the same size as
the data type of ptr(int) will be allocated on the application side (untrus-
ted side) and its content will be initialized to zero. After the untrusted
function returns, the buffer outside the enclave will be copied to the
enclave buffer pointed to by ptr.

l [in, out]: In the function test_ocall_in_out, a buffer with the same
size will be allocated in the application side, the content pointed to by
ptr,one integer value, will be copied to this buffer. After returning, the
buffer outside the enclave will be copied into the inside enclave buffer.

The following table summarizes behavior of wrapper functions when using the
in/out attributes:

Table 12 Behavior of wrapper functions when using the in/out attributes

ECALL OCALL
user_
check

Pointer is not checked. Users must per-
form the check and/or copy.

Pointer is not checked. Users
must perform the check
and/or copy

in Buffer copied from the application into
the enclave. Afterwards, changes will
only affect the buffer inside enclave.

Buffer copied from the
enclave to the application.
Must be used if pointer points

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 49 -

Safe but slow. to enclave data.
out Trusted wrapper function will allocate a

buffer to be used by the enclave. Upon
return, this buffer will be copied to the
original buffer.

The untrusted buffer will be
copied into the enclave by
the trusted wrapper function.
Safe but slow.

in,
out

Combines in and out behavior. Data is
copied back and forth.

Same as ECALLs.

EDL cannot analyze C typedefs and macros found in C headers. If a pointer
type is aliased to a type/macro that does not have an asterisk (*), the EDL
parser may report an error or not properly copy the pointer’s data.

In such cases, declare the type with [isptr] attribute to indicate that it is a
pointer type. See User Defined Data Types for more information.

Example:

// Error, PVOID is not a pointer in EDL

void foo([in, size=4] PVOID buffer);

// OK

void foo([in, size=4] void* buffer);

// OK, “isptr” indicates “PVOID” is pointer type

void foo([in, isptr, size=4] PVOID buffer);

// OK, opaque type, copy by value

// Actual address must be in untrusted memory

void foo(HWND hWnd);

Pointer Handling in ECALLs

In ECALLs, the trusted bridge checks that the marshaling structure does not
overlap with the enclave memory, and automatically allocates space on the
trusted stack to hold a copy of the structure. Then it checks that pointer para-
meters with their full range do not overlap with the enclave memory. When a
pointer to the untrusted memory with the in attribute is passed to the
enclave, the trusted bridge allocates memory inside the enclave and copies
the memory pointed to by the pointer from outside to the enclave memory.
When a pointer to the untrusted memory with the out attribute is passed to
the enclave, the trusted bridge allocates a buffer in the trusted memory, zer-
oes the buffer contents to clear any previous data and passes a pointer to this

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 50 -

buffer to the trusted function. After the trusted function returns, the trusted
bridge copies the contents of the trusted buffer to untrusted memory. When
the in and out attributes are combined, the trusted bridge allocates memory
inside the enclave, makes a copy of the buffer in the trusted memory before
calling the trusted function, and once the trusted function returns, the trusted
bridge copies the contents of the trusted buffer to the untrusted memory.
The amount of data copied out is the same as the amount of data copied in.

NOTE:
When an ECALL with a pointer parameter with out attribute returns, the trus-
ted bridge always copies data from the buffer in enclave memory to the buffer
outside. You must clear all sensitive data from that buffer on failure.

Before the trusted bridge returns, it frees all the trusted heap memory alloc-
ated at the beginning of the ECALL function for pointer parameters with a dir-
ection attribute. Attempting to use a buffer allocated by the trusted bridge
after it returns results in undefined behavior.

Pointer Handling in OCALLs

For OCALLs, the trusted proxy allocates memory on the outside stack to pass
the marshaling structure and checks that the pointer parameters with their full
range are within enclave. When a pointer to trusted memory with the in attrib-
ute is passed from an enclave (an OCALL), the trusted proxy allocates memory
outside the enclave and copies the memory pointed by the pointer from
inside the enclave to the untrusted memory. When a pointer to the trusted
memory with the out attribute is passed from an enclave (an OCALL), the trus-
ted proxy allocates a buffer on the untrusted stack, and passes a pointer to
this buffer to the untrusted function. After the untrusted function returns, the
trusted proxy copies the contents of the untrusted buffer to the trusted
memory. When the in and out attributes are combined, the trusted proxy
allocates memory outside the enclave, makes a copy of the buffer in the
untrusted memory before calling the untrusted function, and after the untrus-
ted function returns the trusted proxy copies the contents of the untrusted
buffer to the trusted memory. The amount of data copied out is the same as
the amount of data copied in.

When the trusted proxy function returns, it frees all the untrusted stack
memory allocated at the beginning of the OCALL function for the pointer para-
meters with a direction attribute. Attempting to use a buffer allocated by the
trusted proxy after it returns results in undefined behavior.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 51 -

Attribute: user_check

In certain situations, the restrictions imposed by the direction attribute may
not support the application needs for data communication across the enclave
boundary. For instance, a buffer might be too large to fit in enclave memory
and needs to be fragmented into smaller blocks that are then processed in a
series of ECALLs, or an application might require passing a pointer to trusted
memory (enclave context) as an ECALL parameter.

To support these specific scenarios, the EDL language provides the user_
check attribute. Parameters declared with the user_check attribute do not
undergo any of the checks described for [in] and [out] attributes.
However, you must understand the risks associated with passing pointers in
and out the enclave, in general, and the user_check attribute, in particular.
You must ensure that all the pointer checking and data copying are done cor-
rectly or risk compromising enclave secrets.

Buffer Size Calculation

The generalized formula for calculating the buffer size using these attributes:

Total number of bytes = count * size

l The above formula holds when both count and size are specified.

l If count is not specified for the pointer parameter, then it is assumed to
be equal to 1, i.e., count=1. Then total number of bytes equals to size.

l If size is not specified, then the buffer size is calculated using the
above formula where size is sizeof (element pointed by the pointer).

Attribute: size

The size attribute is used to indicate the buffer size in bytes used for copy
depending on the direction attribute ([in]/[out]) (when there is no count
attribute specified). This attribute is needed because the trusted bridge
needs to know the whole range of the buffer passed as a pointer to ensure it
does not overlap with the enclave memory, and to copy the contents of the
buffer from untrusted memory to trusted memory and/or vice versa depend-
ing on the direction attribute. The size may be either an integer constant or
one of the parameters to the function. size attribute is generally used for
void pointers.

Example

enclave{

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 52 -

trusted {

// Copies '100' bytes

public void test_size1([in, size=100] void* ptr, size_t len);

// Copies ‘len’ bytes

public void test_size2([in, size=len] void* ptr, size_t len);
};

};

Unsupported Syntax:

enclave{

trusted {

// size/count attributes must be used with
// pointer direction ([in, out])
void test_attribute_cant([size=len] void* ptr, size_t len);

};
};

Attribute: count

The count attribute is used to indicate a block of sizeof element pointed by
the pointer in bytes used for copy depending on the direction attribute. The
count and size attribute modifiers serve the same purpose. The number of
bytes copied by the trusted bridge or trusted proxy is the product of the
count and the size of the data type to which the parameter points. The count
may be either an integer constant or one of the parameters to the function.

The size and count attribute modifiers may also be combined. In this case,
the trusted edge-routine will copy a number of bytes that is the product of
the count and size parameters (size*count) specified in the function declar-
ation in the EDL file.

Example

enclave{

trusted {
// Copies cnt * sizeof(int) bytes
public void test_count([in, count=cnt] int* ptr, unsigned
cnt);

// Copies cnt * len bytes
public void test_count_size([in, count=cnt, size=len] int*
ptr, unsigned cnt, size_t len);

};
};

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 53 -

Strings

The attributes string and wstring indicate that the parameter is a NULL
terminated C string or a NULL terminated wchar_t string, respectively. To
prevent "check first, use later" type of attacks, the trusted edge-routine first
operates in untrusted memory to determine the length of the string. Once the
string has been copied into the enclave, the trusted bridge explicitly
NULL terminates the string. The size of the buffer allocated in trusted memory
accounts for the length determined in the first step as well as the size of the
string termination character.

NOTE
There are some limitations on the usage of string and wstring attributes :

l string and wstring must not be combined with any other modifier
such as size, or count.

l string and wstring cannot be used with out alone. However,
string and wstring with both in and out are accepted.

l string can only be used for char pointers; while wsting can only be
used for wchar_t pointers.

Example

enclave {

trusted {

// Cannot use [out] with "string/wstring" alone
// Using [in] , or [in, out] is acceptable
public void test_string([in, out, string] char* str);

public void test_wstring([in, out, wstring] char* wstr);

public void test_const_string([in, string] const char* str);

};
};

Unsupported Syntax:

enclave {

include "user_types.h" //for typedef void const * pBuf2;

trusted {

// string/wstring attributes must be used

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 54 -

// with pointer direction
void test_string_cant([string] char* ptr);
void test_string_cant_usercheck([user_check, string] char*
ptr);

// string/wstring attributes cannot be used
// with [out] attribute
void test_string_out([out, string] char* str);

// string/wstring attributes musted be used
// for char/wchar_t pointers
void test_string_out([in, string] void* str);

};
};

In the first example, when the string attribute is used for function test_
string, strlen(str)+1 is used as the size for copying the string in and out
of the enclave. The extra byte is for null termination.

In the function test_wstring, wcslen(str)+1 (two-byte units) will be
used as the size for copying the string in and out of the enclave.

const Keyword

The EDL language accepts the const keyword with the same meaning as the
const keyword in the C standard. However, the support for this keyword is
limited in the EDL language. It may only be used with pointers and as the out-
ermost qualifier. This satisfies the most important usage in Intel® SGX, which is
to detect conflicts between const pointers (pointers to const data) with the
out attribute. Other forms of the const keyword supported in the C stand-
ard are not supported in the EDL language.

Structures, Enums and Unions
Basic types and user defined data types can be used inside the struc-
ture/union except it differs from the standard in the following ways:

Unsupported Syntax:

enclave{

// 1. Each member of the structure has to be
// defined separately
struct data_def_t{

int a, b, c; // Not allowed
// It has to be int a; int b; int c;

};

// 2. Bit fields in structures/unions are not allowed.
struct bitfields_t{

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 55 -

short i : 3;
short j : 6;
short k : 7;

};

//3. Nested structure definition is not allowed
struct my_struct_t{

int out_val;
float out_fval;
struct inner_struct_t{

int in_val;
float in_fval;

};
};

};

Valid Syntax:

enclave{

include "user_types.h" //for ufloat: typedef float ufloat

struct struct_foo_t {
uint32_t struct_foo_0;
uint64_t struct_foo_1;

};

enum enum_foo_t {
ENUM_FOO_0 = 0,
ENUM_FOO_1 = 1

};

union union_foo_t {
uint32_t union_foo_0;
uint32_t union_foo_1;
uint64_t union_foo_3;

};

trusted {

public void test_char(char val);
public void test_int(int val);
public void test_long(long long val);

public void test_float(float val);
public void test_ufloat(ufloat val);
public void test_double(double val);
public void test_long_double(long double val);

public void test_size_t(size_t val);
public void test_wchar_t(wchar_t val);

public void test_struct(struct struct_foo_t val);
public void test_struct2(struct_foo_t val);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 56 -

public void test_enum(enum enum_foo_t val);
public void test_enum2(enum_foo_t val);

public void test_union(union union_foot_t val);
public void test_union2(union_foo_t val);

};

};

NOTE:
When referencing a structure, enum or union inside the EDL file, you must fol-
low C style and use the corresponding key word struct ,enum or union.

Structure Deep Copy

Member pointers in a structure can be decorated with a buffer size attribute
size, or count to indicate deep copy structure instead of shallow copy.
When the trusted edge-routines copy the buffer pointed by the structure
pointer, they also copy the buffer pointed by the structure member pointer
instructed by direction attribute of the structure pointer. The member pointer
values are also modified accordingly.

The buffer size of the structure must be a multiple of structure size and the
buffer is deep copied as an array of structure. Since function call by value
make a shallow copy, deep copy structure is not allowed to call by value. Dir-
ection attribute of deep copy structure pointer can be in and in, out. If a
member pointer is not basic type, trusted edge-routines don't deep copy it
recursively .

Example

enclave {

struct struct_foo_t {
uint32_t count;
size_t size;
[count = count, size = size] uint64_t* buf;

};

trusted {
public void test_ecall_deep_copy([in, count = 1] struct
struct_foo_t * ptr);

};
};

Before calling the ecall , prepare the following data in untrusted domain as
parameter:

struct struct_foo_t foo = { 4, 8, data};

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 57 -

foo.count = 4;
foo.size = 8;
foo.buf = address of data[] in untrusted domain.
data[] = {0x1112131415161718,

0x2122232425262728,
0x3132333435363738,
0x4142434445464748}

After calling the ecall, the data in trusted domain will be:

struct struct_foo_t foo = { 4, 8, data2};

foo.count = 4;
foo.size = 8;
foo.buf = address of data2[] in trusted domain.
data2[] = {0x1112131415161718,

0x2122232425262728,
0x3132333435363738,
0x4142434445464748}

NOTE:
When deep copying a pointer parameter with in attribute in an OCALL, the
pointer in the structure, which is the address of a trusted domain, is copied to
untrusted domain ephemerally. You must avoid this scenario if the address is
sensitive data .

Arrays
The Enclave Definition Language (EDL) supports multidimensional, fixed-size
arrays to be used in data structure definition and parameter declaration.

Arrays also should be decorated with the attribute [in], [out] or [user_
check] explicitly, which are similar to the pointers.

NOTE
Limitations on the array usage:

l size/count cannot be used for array types

l const cannot be used for array types

l Zero-length arrays or flexible arrays are not supported by EDL syntax

l Pointer arrays are not supported by EDL syntax

Example

enclave {

include "user_types.h" //for uArray - typedef int uArray[10];

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 58 -

trusted {

public void test_array([in] int arr[4]);

public void test_array_multi([in] int arr[4][4]);

};
};

Unsupported Syntax:

enclave {

include "user_types.h" //for uArray - typedef int uArray[10];

trusted {

// Flexible array is not supported
public void test_flexible(int arr[][4]);

// Zero-length array is not supported.
public void test_zero(int arr[0]);

};
};

A special attribute isary is used to designate function parameters that are of
a user defined type array. See User Defined Data Types for more information.

User Defined Data Types

The Enclave Definition Language (EDL) supports user defined data types, but
should be defined in a header file. Any basic datatype which is typedef’ed into
another becomes a user defined data type.

Some user data types need to be annotated with special EDL attributes, such
as isptr, isary and readonly. If one of these attributes is missing when a
user-defined type parameter requires it so, the compiler will emit a com-
pilation error in the code that sgx_edger8r generates.

l When there is a user defined data type for a pointer, isptr is used to
indicate that the user defined parameter is a pointer. See Pointers for
more information.

l When there is a user defined data type for arrays, isary is used to indic-
ate that the user defined parameter is an array. See Arrays for more
information.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 59 -

l When an ECALL or OCALL parameter is a user defined type of a pointer
to a const data type, the parameter should be annotated with the
readonly attribute.

NOTE
isptr, isary and readonly can only be used to decorate a user defined
data type. Do not use them for any basic types, pointers or arrays.

readonly can only be used with isptr attribute. Any other usage of
readonly is not allowed.

Example

enclave {

include "user_types.h" // for typedef void * pBuf;
 // and typedef void const * pBuf2;
 // and typedef int uArray[10];

trusted {

public void test_isptr(
[in, isptr, size=len] pBuf pBufptr,
size_t len);

public void test_isptr_readonly(
[in, isptr, readonly, size=len] pBuf2 pBuf2ptr,
size_t len);

public void test_isary([in, isary] uArray arr);
};

};

Unsupported Syntax:

enclave {

include "user_types.h" //for typedef void const * pBuf2;
 // and typedef int uArray[10];

trusted {
// Cannot use [out] when using [readonly] attribute
void test_isptr_readonly_cant(

[in, out, isptr, readonly, size=len] pBuf2
pBuf2ptr,
size_t len);

// isptr cannot be used for pointers/arrays
public void test_isptr_cant1(

[in, isptr, size=len] pBuf* pBufptr,
size_t len);

public void test_isptr_cant2(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 60 -

[in, isptr, size=len] void* pBufptr,
size_t len);

// User-defined array types need "isary"
public void test_miss_isary([in] uArray arr);

// size/count attributes cannot be used for user-defined
array types
public void test_isary_cant_size(

[in, size=len] uArray arr,
size_t len);,

// isary cannot be used for pointers/arrays
public void test_isary_cant(

[in, isary] uArray arr[4]);

};
};

In the function test_isptr_readonly, pBuf2 (typedef void const *
pBuf2) is a user defined pointer type, so isptr is used to indicate that it is a
user defined type. Also, the pBuff2ptr is readonly, so you cannot use the
out attribute.

Preprocessor Capability
The EDL language supports macro definition and conditional compilation dir-
ectives. To provide this capability, the sgx_edger8r first uses the compiler
preprocessor to parse the EDL file. Once all preprocessor tokens have been
translated, the sgx_edger8r then parses the resulting file as regular EDL lan-
guage. This means that developers may define simple macros and use con-
ditional compilation directives to easily remove debug and test capabilities
from production enclaves, reducing the attack surface of an enclave. See the
following EDL example.

#define SGX_DEBUG

enclave {

trusted {
// ECALL definitions

}
untrusted {

// OCALL definitions
#ifdef SGX_DEBUG

void print([in, string] const char * str);
#endif

}
}

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 61 -

The current sgx_edger8r does not propagate macro definitions from the
EDL file into the generated edge-routines. As a result, you need to duplicate
macro definitions in both the EDL file as well as in the compiler arguments or
other source files.

We recommend you only use simple macro definitions and conditional com-
pilation directives in your EDL files.

The sgx_edger8r uses gcc to parse macros and conditional compilation dir-
ectives that might be in the EDL file. You may override the default search beha-
vior or even specify a different preprocessor with the --preprocessor
option.

Propagating errno in OCALLs
OCALLs may use the propagate_errno attribute. When you use this attrib-
ute, the sgx_edger8r produces slightly different edge-routines. The errno
variable inside the enclave, which is provided by the trusted Standard C lib-
rary, is overwritten with the value of errno in the untrusted domain before
the OCALL returns. The trusted errno is updated upon OCALL completion
regardless whether the OCALL was successful or not. This does not change the
fundamental behavior of errno. A function that fails must set errno to indic-
ate what went wrong. A function that succeeds, in this case the OCALL, is
allowed to change the value of errno.

Example

enclave {

include "sgx_stdio_stubs.h" //for FILE and other definitions

trusted {
public void test_file_io(void);

};

untrusted {

FILE * fopen(
[in,string] const char * filename,
[in,string] const char * mode) propagate_errno;

int fclose([user_check] FILE * stream) propagate_errno;

size_t fwrite(
[in, size=size, count=count] const void * buf-
fer,
size_t size,
size_t count,
[user_check]FILE * stream) propagate_errno;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 62 -

};
};

Importing EDL Libraries
You can implement export and import functions in external trusted libraries,
akin to static libraries in the untrusted domain. To add these functions to an
enclave, use the enclave definition language (EDL) library import mechanism.

Use the EDL keywords from and import to add a library EDLfile to an
enclave EDL file is done .

The from keyword specifies the location of the library EDL file. Relative and
full paths are accepted. Relative paths are relative to the location of the EDL
file. It is recommended to use different names to distinguish the library EDL
file and the enclave EDL file.

The import keyword specifies the functions to import. An asterisk (*) can be
used to import all functions from the library. More than one function can be
imported by writing a list of function names separated by commas.

Syntax

from “lib_filename.edl” import func_name, func2_name;

Or

from “lib_filename.edl” import *;

Example

enclave {

from “secure_comms.edl” import send_email, send_sms;

from "../../sys/other_secure_comms.edl" import *;

};

A library EDL file may import another EDL file, which in turn, may import
another EDL file, creating a hierarchical structure as shown below:

// enclave.edl

enclave {

from “other/file_L1.edl” import *; // Import all functions
};

// Trusted library file_L1.edl

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 63 -

enclave {

from "file_L2.edl" import *;

trusted {
public void test_int(int val);

};
};

// Trusted library file_L2.edl

enclave {

from "file_L3.edl" import *;

trusted {
public void test_ptr(int* ptr);

};
};

// Trusted library file_L3.edl

enclave {

trusted {
public void test_float(float flt);

};
};

Granting Access to ECALLs
The default behavior is that ECALL functions cannot be called by any of the
untrusted functions.

To enable an ECALL to be directly called by application code as a root ECALL,
the ECALL should be explicitly decorated with the public keyword to be a
public ECALL. Without this keyword, the ECALLs will be treated as private
ECALLs, and cannot be directly called as root ECALLs.

Syntax

trusted {

public <function prototype>;
};

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 64 -

An enclave EDL must have one or more public ECALLs, otherwise the Enclave
functions cannot be called at all and sgx_edger8r will report an error in this
case.

To grant an OCALL function access to an ECALL function, specify this access
using the allow keyword. Both public and private ECALLs can be put into the
allow list.

Syntax

untrusted {

<function prototype> allow (func_name, func2_name, …);
};

Example

enclave {

trusted {
public void clear_secret();
public void get_secret([out] secret_t* secret);
void set_secret([in] secret_t* secret);

};
untrusted {

void replace_secret(
[in] secret_t* new_secret,
[out] secret_t* old_secret)
allow (set_secret, clear_secret);

};
};

In the above example, the untrusted code is granted dif-
ferent access permission to the ECALLs.

ECALL called as root ECALL called from replace_secret
clear_secret Y Y
get_secret Y N
set_secret N Y

Using Switchless Calls
ECALLs and OCALLs can use the transition_using_threads attribute as a post-
fix of the function declaration in the EDL file. When you use this attribute, the
sgx_edger8r produces different edge-routines.

ECALLs and OCALLs with the transition_using_threads attribute use the
Switchless mode of operation to serve the call.

(See: Using Switchless Calls)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 65 -

Example

enclave {

trusted {
public void ecall_empty(void);
public void ecall_empty_switchless(void) transition_using_
threads;

};
untrusted {

void ocall_empty(void);
void ocall_empty_switchless(void) transition_using_threads;

};
};

Enclave Configuration File
The enclave configuration file is an XML file containing the user defined para-
meters of an enclave. This XML file is a part of the enclave project. A tool
named sgx_sign uses this file as an input to create the signature and
metadata for the enclave. Here is an example of the configuration file:

<EnclaveConfiguration>

<ProdID>100</ProdID>
<ISVSVN>1</ISVSVN>
<StackMaxSize>0x50000</StackMaxSize>
<StackMinSize>0x2000</StackMinSize>
<HeapMaxSize>0x100000</HeapMaxSize>
<HeapMinSize>0x40000</HeapMinSize>
<HeapInitSize>0x80000</HeapInitSize>
<TCSNum>3</TCSNum>
<TCSMaxNum>4</TCSMaxNum>
<TCSMinPool>2</TCSMinPool>
<TCSPolicy>1</TCSPolicy>
<DisableDebug>0</DisableDebug>
<MiscSelect>0</MiscSelect>
<MiscMask>0xFFFFFFFF</MiscMask>
<EnableKSS>1</EnableKSS>
<ISVEXTPRODID_H>1</ISVEXTPRODID_H>
<ISVEXTPRODID_L>2</ISVEXTPRODID_L>
<ISVFAMILYID_H>3</ISVFAMILYID_H>
<ISVFAMILYID_L>4</ISVFAMILYID_L>

</EnclaveConfiguration>

The table below lists the elements defined in the configuration file. All of them
are optional. Without a configuration file or if an element is not present in the
configuration file, the default value is be used.

Table 13 Enclave Configuration Default Values

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 66 -

Tag Description Default Value
ProdID ISV assigned Product ID. 0
ISVSVN ISV assigned SVN. 0
TCSNum The number of TCS. Must

be greater than 0.
1

TCSMaxNum The maximum number of
TCS. Must be greater than
0.

1

TCSMinPool The minimum number of
available TCS at any time
in the life cycle of an
enclave

1

TCSPolicy TCS management policy.

0 – TCS is bound to the
untrusted thread.
1 – TCS is not bound to
the untrusted thread.

1

StackMinSize The minimum stack size
per thread. Must be 4KB
aligned.

0x2000

StackMaxSize The maximum stack size
per thread. Must be 4KB
aligned.

0x40000

HeapInitSize The initial heap size for
the process. Must be 4KB
aligned.

0x1000000

HeapMinSize The minimum heap size
for the process. Must be
4KB aligned.

0x1000

HeapMaxSize The maximum heap size
for the process. Must be
4KB aligned.

0x1000000

ReservedMemMaxSize The maximum reserved
memory size for the process.
Must be 4KB aligned.

0x0000000

ReservedMemMinSize The minimum reserved memory
size for the process. Must be

0x0000000

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 67 -

4KB aligned.

ReservedMemInitSize The initial reserved memory size
for the process. Must be 4KB
aligned.

0x0000000

ReservedMemEx-
ecutable

The reserved memory is execut-
able.

Note: This value is only used
for the Intel® SGX 1 platform.

0 - Reserved memory is
not executable

1 - Reserved memory is
executable

DisableDebug Enclave cannot be
debugged.

0 - Enclave can be
debugged

MiscSelect The desired Extended
SSA frame feature.

0

MiscMask The mask bits of Mis-
cSelect to enforce.

0xFFFFFFFF

EnableKSS Enable the Key Separation
and Sharing feature

0

ISVEXTPRODID_H ISV assigned Extended
Product ID

(High 8 bytes)

0

ISVEXTPRODID_L ISV assigned Extended
Product ID (Low 8 bytes)

0

ISVFAMILYID_H ISV assigned Family ID
(High 8 bytes)

0

ISVFAMILYID_L ISV assigned Family ID
(Low 8 bytes)

0

EnclaveImageAddress The base address of the
enclave image file.

0

ELRangeStartAddress The base address of the
enclave address range.

0

PKRU Enable the Protection
Keys

0

MiscSelect and MiscMask are for future functional extension. Currently,
MiscSelect must be 0. Otherwise the corresponding enclave may not be
loaded successfully.

TCSMaxNum, TCSNum, and TCSMinPool are used to determine how many
threads will be created after the enclave initialization, and how many threads

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 68 -

can be created dynamically when the enclave is running. These two kinds of
threads are referred to as static threads and dynamic threads respectively.

StackMaxSize and StackMinSize have different meanings to a static
thread and a dynamic thread.

For a static thread, only StackMaxSize is relevant, which determines the
maximum amount of stack available.

For a dynamic thread, StackMinSize is the amount of stack available once
the thread is created and initialized. The gap between StackMinSize and
StackMaxSize is the amount of stack that is not available currently but can
be expanded as necessary later. Therefore, StackMaxSize is the total
amount of stack a thread can use. StackMinSize can be regarded as the
lower limit and StackMaxSize is the upper limit.

When an enclave created with the Linux* 2.0 SDK is executing on an Intel®
SGX 2.0 platform that is running the Intel® SGX 2.0 PSW, HeapMinSize is the
amount of heap available once the enclave completes initialization.

HeapMaxSize is the total amount of heap an enclave can use. The gap
between HeapMinSize and HeapMaxSize is the amount of heap that is not
available currently but can be expanded as necessary later.

When an enclave created with the Linux* 2.0 SDK is executing on an older
Intel SGX platform or a platform running a previous version of PSW, the values
are interpreted differently. In this case HeapInitSize is the only relevant
field and it indicates the total amount of heap available to an enclave.

ReservedMemMinSize, ReservedMemMaxSize and ReservedMemIn-
itSize can be used to configure a reserved memory area for an enclave. By
default, an enclave has no reserved memory. You can add a reserved memory
area by specifying these fields in the enclave's configuration file. The reserved
memory area will be added at the end of the enclave at the loading time and
can be used at the runtime.

ReservedMemExecutable can be used to configure whether the reserved
memory has executable permission by setting ReservedMemExecutable to
1.

NOTE:
On the Intel® SGX 2.0 platform, the reserved memory is forcely configured to
RW permission although ReservedMemExecutable is set to 1.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 69 -

Currently, the reserved memory is used to support Just in Time (JIT) usage in
the Intel® SGX DNNL Library.

Several sample configuration files are provided in SampleEnclave project in
order to further clarify the effects of different combinations of the parameter
settings.

Set EnableKSS to 1 to enable the Key Separation & Sharing (KSS) feature for
the enclave. ISVEXTPRODID_H and ISVEXTPRODID_L are used to set the
ISV assigned Extended Product ID, which is a 16-byte value. ISVFAMILYID_H
and ISVFAMILYID_L are for the 16-bytes ISV assigned Family ID. Note that
you need to enable KSS before setting the ISV assigned Extended Product ID
and the ISV assigned Family ID.

The total amount of stack and heap actually used by an enclave can be meas-
ured by using the measurement tool sgx_emmt. See Enclave Memory Meas-
urement Tool for details.

An Eclipse* plug-in named Intel® SGX Update Configuration is provided to
help you easily edit your configuration file. See the Intel® SGX Eclipse* Plug-in
User's Guide from the Eclipse's Help content for details.

If there is no enough stack for the enclave, ECALL returns the error code SGX_
ERROR_STACK_OVERRUN. This error code gives the information to enclave
writer that the StackMaxSize may need further adjustment.

EnclaveImageAddress, ElRangeStartAddress and ElRangeSize can
be used to configure enclave elrange for an enclave. By default, these fields
are set to 0. You can specify these fields in the enclave's configuration file.

PKRU can be used to enable or disable the Protection Keys inside enclave.
Below lists the acceptable value and the corresponding meaning for this field:

l 0 - The feature must be disabled

l 1 - The feature must be enabled

l 2 - Let the loader choose to enable the feature or not.

Enclave Project Configurations
Depending on the development stage you are at, choose one of the following
project configurations to build an enclave:

l Simulation: Under the simulation mode the enclave can be either built
with debug or release compiler settings. However, in both cases the

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 70 -

enclave is launched in the enclave debug mode. The Eclipse* plugin
provides the Intel® SGX Simulation and Intel® SGX Simulation
Debug configuration options to enable compiling and launching the
enclave in the simulation mode.From the command line, an enclave can
be built in this mode by passing SGX_DEBUG=1 for debug simulation
and no parameters for release simulation. This is the default build mode.
Single-step signing is the default method to sign a simulation enclave.

l Debug: When the Intel® SGX Hardware Debugconfiguration option is
selected for an enclave project in Eclipse* plugin, the enclave is com-
piled in the debug mode and the resulting enclave file will contain debug
information and symbols.To use this configuration for an enclave, set
SGX_MODE=HW and SGX_DEBUG=1 as parameters to the Makefile during
the build. Choosing this project configuration also allows the enclave to
be launched in the enclave debug mode. This is facilitated by enabling
the SGX_DEBUG_FLAG that is passed as one of the parameters to the
sgx_create_enclave function. Single-step method is the default
signing method for this project configuration. The signing key used in
this mode cannot be added to the allowlist.

l Prerelease: When you choose the Intel® SGX Hardware Prerelease con-
figuration option for an enclave project, Eclipse* plugin will build the
enclave in release mode with compiler optimizations applied.An enclave
is built in this mode by setting SGX_MODE=HW and SGX_
PRERELEASE=1 in the Makefile during build. Under this configuration,
the enclave is launched in enclave debug mode. The Makefile of the
sample application defines the EDEBUG flag when SGX_PRERELEASE=1
is passed as a command line parameter to the Makefile during build.
When the EDEBUG preprocessor flag is defined, it enables the SGX_
DEBUG_FLAG, which in turn, launches the enclave in the enclave debug
mode. Single-step method is also the default signing method for the
Prerelease project configuration. Like in the Debug configuration, the sign-
ing key cannot be added to the allowlist either.

l Release: The Intel® SGX Hardware Release configuration option for an
Eclipse plugin enclave project compiles the enclave in the release mode
and launches the enclave in the enclave release mode. This is done by
disabling the SGX_DEBUG_FLAG.This mode is enabled in enclave by
passing SGX_MODE=HW to the Makefile while building the project. SGX_

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 71 -

DEBUG_FLAG is only enabled when NDEBUG is not defined or EDEBUG is
defined. In the debug configuration NDEBUG is undefined and hence
SGX_DEBUG_FLAG is enabled. In the prerelease configuration NDEBUG
and EDEBUG are both defined, which enables SGX_DEBUG_FLAG. In the
release mode, configuration NDEBUG is defined and hence it disables
SGX_DEBUG_FLAG thereby launching the enclave in enclave release
mode. Two-step method is the default signing method for the Release
configuration. The enclave needs to be signed with a key that has been
added to the allowlist.

For additional information on the different enclave signing methods, see
Enclave Signing Tool and Enclave Signer Usage Examples

Loading and Unloading an Enclave
Enclave source code is built as a shared object. To use an enclave, the
enclave.so should be loaded into protected memory by calling the API sgx_
create_enclave() or sgx_create_encalve_ex(). The enclave.so
must be signed by sgx_sign. Before the Intel® SGX 2.4 release, when loading
an enclave for the first time, the loader gets a launch token and saves it back
to the in/out parameter token. You can save the launch token into a file, so
that when loading an enclave for the second time, the application can get the
launch token from the file. Providing a valid launch token can enhance the load
performance. Starting the Intel® SGX 2.4 release, you do not need to pass and
store the launch token anymore. To unload an enclave, call sgx_destroy_
enclave() interface with parameter sgx_enclave_id_t.

The sample code to load and unload an Enclave is shown below.

#include <stdio.h>

#include <tchar.h>

#include "sgx_urts.h"

#define ENCLAVE_FILE _T("Enclave.signed.so")

int main(int argc, char* argv[])

{

sgx_enclave_id_t eid;
sgx_status_t ret = SGX_SUCCESS;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 72 -

sgx_launch_token_t token = {0};
int updated = 0;

// Create the Enclave with above launch token.
ret = sgx_create_enclave(ENCLAVE_FILE, SGX_DEBUG_FLAG, &token,
&updated, &eid, NULL);
if (ret != SGX_SUCCESS) {

printf("App: error %#x, failed to create enclave.\n", ret);
return -1;

}

// A bunch of Enclave calls (ECALL) will happen here.

// Destroy the enclave when all Enclave calls finished.
if(SGX_SUCCESS != sgx_destroy_enclave(eid))

return -1;

return 0;
}

Handling Power Events
The protected memory encryption keys that are stored within an Intel SGX-
enabled CPU are destroyed with every power event, including suspend and
hibernation.

Thus, when a power transition occurs, the enclave memory will be removed
and all enclave data will not be accessible after that. As a result, when the sys-
tem resumes, any subsequent ECALL will fail returning the error code SGX_
ERROR_ENCLAVE_LOST. This specific error code indicates the enclave is lost
due to a power transition.

An Intel SGX application should have the capability to handle any power trans-
ition that might occur while the enclave is loaded in protected memory. To
handle the power event and resume enclave execution with minimum impact,
the application must be prepared to receive the error code SGX_ERROR_
ENCLAVE_LOST when an ECALL fails. When this happens, one and only one
thread from the application must destroy the enclave, sgx_destroy_
enclave(), and reload it again, sgx_create_enclave(). In addition, to
resume execution from where it was when the enclave was destroyed, the
application should periodically seal and save enclave state information on the
platform and use this information to restore the enclave to its original state
after the enclave is reloaded.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 73 -

The Power Transition sample code included in the SDK demonstrates this pro-
cedure.

Using Switchless Calls
An enclave switch occurs whenever the execution of a CPU jumps in (EENTER)
or out (EEXIT) of an enclave; for example, when making ECALLs/OCALLs.
Enclave switches have a performance overhead. For workloads with short and
frequent calls, the enclave switching overhead can be reduced using Switch-
less Calls. Switchless Calls introduce a new mode of operation to perform calls
from/to Intel® SGX enclaves, using worker threads inside and outside the
enclave.

PERFORMANCE NOTE:
Switchless calls is an advanced feature. It requires additional worker threads
and configuration, performance testing and tuning. It should be used for work-
loads that require fine performance tuning. Misconfiguration may result in
under utilized worker threads, which consumes CPU time while not serving
any tasks.

Usage
To use Switchless calls, the EDL attribute transition_using_threads
should be postfixed to the ECALLs and OCALLs where Switchless Calls are
required. An EDL file can contain ECALLs/OCALLs with or without this attribute.

The application code must create an enclave using sgx_create_enclave_
ex, set the Switchless flag in an extended options vector, and provide a switch-
less configuration structure . In addition, the enclave must be linked with the
libsgx_tswitchless.a library (see Switchless Calls Library). If the applic-
ation creates an enclave that supports Switchless Calls using sgx_create_
enclave, the enclave is created, but the Switchless Calls mode of operation
is disabled and all calls are using enclave switches. If transition_using_
threads attribute is used, but the enclave is not linked with libsgx_twitch-
less.a library, creating the enclave using sgx_create_enclave_ex will
return SGX_ERROR_UNEXPECTED.

On enclave creation, the uRTS creates several trusted and untrusted worker
threads according to the Switchless configuration provided via initialization
structures and allocates the required data structures for Switchless Calls. Trus-
ted worker threads use regular enclave TCSes. The TCSNum defined in the
enclave XML configuration should be updated accordingly when building an
enclave with switchless trusted worker threads.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 74 -

NOTE:
You should not use Switchless Calls with TCS binding policy, namely
TCSPolicy 0. Using this policy disables concurrent execution of E/OCALLS.

When a developer builds an enclave with the TCS binding policy, they expect
the TLS data of the trusted thread to be preserved across calls to the same
trusted function. However, this behavior cannot be provided if the enclave
uses switchless calls for two main reasons:

l Worker threads handle different switchless ECALLs, despite the TCS
binding policy. As a result, the TLS area assigned to any worker thread
will be re-used by all the ECALL functions that the worker thread ser-
vices.

l When a switchless call request times out, it is serviced as a regular ECALL
using a TCS reserved for regular ECALLs. Thus, the switchless ECALL will
re-use the TLS area of a regular ECALL.

Example usage of sgx_create_enclave_ex:

sgx_launch_token_t token = {0};

sgx_status_t ret = SGX_ERROR_UNEXPECTED;

int updated = 0;

sgx_uswitchless_config_t us_config = { 0, 1, 1,
100000, 100000, { 0 } };

void* enclave_ex_p[32] = { 0 };

enclave_ex_p[SGX_CREATE_ENCLAVE_EX_SWITCHLESS_
BIT_IDX] = &us_config;

sgx_enclave_id_t eid;

const char* fname = "enclave.signed.so";

ret = sgx_create_enclave_ex (fname,

SGX_DEBUG_FLAG, &token, &updated, &eid,
NULL,

SGX_CREATE_ENCLAVE_EX_SWITCHLESS,
enclave_ex_p);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 75 -

High Level Overview

Figure 1 Switchless Calls Architecture

Major Highlights:

l Two task pools, for ECALL and OCALL-tasks respectively.

l Several worker threads servicing ECALLs (running inside the enclave)
and OCALLs (running outside the enclave) requests.

l Task objects describing an ECALL/OCALL request including all the
required parameters.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 76 -

Task Pool

The Task Pool contains task requests pending to be executed. It uses task
objects to transfer data between trusted and untrusted sides without invoking
EENTER/EEXIT.

The application defines at runtime the task pool size, namely the number of
concurrent task requests.

Worker Threads

Worker threads wait for one or more pending tasks in the relevant task pool
and start executing the tasks until the task pool gets empty.

The number of working threads is defined by the application at runtime and
should be at least two to support nested Switchless Calls.

The depth of nested Switchless Calls (Switchless OCALL → Switchless
ECALL→ … → Switchless OCALL) cannot be greater than the number of work-
ing threads.

Fallback to regular ECALLs/OCALLs

When the Task Pool is full, or when all Worker Threads are busy, a Switchless
Call falls back to a regular ECALL/OCALL.

Nested Switchless ECALL

Switchless Calls do not support private nested ECALLs. Nested ECALLs using
the transition_using_threads keywords must be public as well. Allowing a nes-
ted switchless ECALL is not sufficient. A non-public nested ECALL returns
SGX_ERROR_ECALL_NOT_ALLOWED to the application.

Switchless Calls Usage Configuration Tips
The Switchless Calls operation mode can improve performance of some work-
loads. However, this mode is complex and may cause a slowdown or/and a
resource overloading by busy-wait worker threads.

It is highly recommended to introduce performance measurements and tun-
ing to the development cycle when you use switchless calls. A simple example
is shown in the Switchless sample code.

Switchless Calls Operation Mode Callbacks

The application can register callbacks for worker thread events. Worker
threads can send four types of events:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 77 -

l worker threads starts

l worker thread exits

l worker thread enters idle state (sleep)

l worker thread misses switchless call (fallback)

Worker thread events contain statistics of processed and missed (fallback)
switchless calls. The statistics is common for all worker threads of the same
type (trusted/untrusted).

Application may use the Switchless mode callbacks (sgx_uswitchless_
worker_callback_t) to gather additional performance data. Note that the
worker thread MISS event (SGX_USWITCHLESS_WORKER_EVENT_MISS) may
happen and cause additional overhead.

Applications that use Switchless Calls may find it useful to detect the HW cap-
abilities of the CPU: the number of cores and threads to configure the switch-
less configuration structure.

The worker thread START event (SGX_USWITCHLESS_WORKER_EVENT_
START) can be used to set thread affinity .

See the example of the worker thread exit callback below. For the callback
prototype, refer to sgx_uswitchless_worker_callback_t.

// global processed/missed calls counters

// 0,1 - untrusted; 2,3 - trusted

uint64_t g_stats[4] = { 0 };

/**

* callback to log switchless calls stats

*/

void exit_callback (

sgx_uswitchless_worker_type_t type,
sgx_uswitchless_worker_event_t event,
const sgx_uswitchless_worker_stats_t* stats)

{

// last thread exiting will update the latest results
g_stats[type*2] = stats->processed;
g_stats[type*2+1] = stats->missed;

}

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 78 -

Enabling Enclave Code Confidentiality
Intel® Software Guard Extensions Protected Code Loader (Intel® SGX PCL) is
intended to protect Intellectual Property (IP) within the code for Intel® SGX
enclave applications running on the Linux* OS.

Problem: Intel® SGX provides integrity of code and confidentiality and integ-
rity of data at run-time. However, it does NOT provide confidentiality of code
offline as a binary file on disk. Adversaries can reverse engineer the binary
enclave shared object.

Solution: Encrypt the enclave shared object (.so) at build time and decrypt it
at enclave load time.

Intel® SGX PCL Architectural Overview
Build Time:

Figure below shows the Intel® SGX PCL build flow.

Figure 2 Intel® SGX PCL Build Flow

1. The Intel® SGX PCL library is linked into the ISV Intel® SGX IP Enclave.

2. Before the ISV IP Enclave is signed, the linked shared object is modified so
that ELF sections containing IP are encrypted. The green key designates the
symmetric encryption/decryption key.

Notes:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 79 -

• The Intel® SGX PCL encryption tool treats all sections as IP, except for sec-
tions that are required by either the signing tool, the Intel® SGX PSW Enclave
Loader, or the Intel® SGX PCL decryption flow. For a detailed list, see ‘Sections
that are Not Encrypted’ below.

• Encryption/decryption key management is the ISV responsibility, which is
out of scope for this document.

Run Time

ISV Sealing Enclave

To load an IP Enclave, the ISV must first transport a decryption AES key to the
user local machine, seal it on the user local machine, and use it as an input for
the Intel® SGX PCL. For this, the ISV must devise the second enclave, the ‘Seal-
ing Enclave’. The figure below shows this flow:

Figure 3 ISV Sealing Enclave Flow

The ISV Sealing Enclave performs the following operation:

1. Uses the existing standard Intel® SGX SDK Remote Attestation to generate
a secure session with the ISV server. (The light blue key illustrates session
keys)

2. Receives the decryption key from the ISV server in a secured way.

See details at “Intel® SGX PCL Decryption key provisioning" below. (The green
key illustrates a decryption key)

3. Uses the existing standard Intel® SGX SDK sealing mechanism to generate
the sealed key and store it locally.

Notes:

• For the Sealing Enclave and the IP Enclave to be able to seal and unseal the
decryption key, both enclaves must be signed with the same Intel® SGX ISV
signing key and have the same ProdID.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 80 -

• Once the sealed key is generated, it can be stored in nonvolatile memory on
the platform. This decreases the number of remote attestations required to
run.

ISV IP Enclave

Figure below shows the enclave loading flow:

Figure 4 ISV IP Enclave Loading Flow

The ISV IP Enclave performs the following operations:

1. Receives the Sealed Key Blob as input.

2. Unseals the blob to receive the decryption key.

3. Uses the decryption key to decrypt the IP content.

Comparison with Standard Flow

Table below summarizes the differences between the IP Enclave load flows
with and without the Intel® SGX PCL.

Table 14 Comparison of flows with and without Intel® SGX PCL:

Step Standard Flow
(No Intel® SGX PCL)

Intel® SGX PCL Flow

Build
Time

l Link: ISV archives
and objs are linked
to Enclave.so

l Sign: Enclave.so is
signed to generate
Enclave.signed.so

l Link: ISV archives, objs, and libsgx_
pcl.a are linked to IPEnclave.so

l Encrypt IPEnclave.so to IPEn-
clave.so.enc

l Sign: IPEnclave.so.enc is signed to
generate IPEnclave.signed.so

Enclave
Load

1. Enclave application 1. Enclave application gets the sealed

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 81 -

loads the enclave
using sgx_create_
enclave.

2. sgx_create_enclave
performs an implicit
ecall.

3. The implicit ecall ini-
tiates an enclave
runtime initialization
flow.

decryption key.
2. Enclave application loads the enclave

using sgx_create_enclave_ex, provid-
ing the sealed decryption key

3. sgx_create_enclave_ex performs an
implicit ecall.

4. The Implicit ecall invokes the Intel®
SGX PCL flow.

5. Intel® SGX PCL unseals the sealed
blob to get the decryption key.

6. Intel® SGX PCL decrypts the encryp-
ted IP sections and returns the
enclave to its functional state.

7. The process continues with the
enclave runtime initialization flow.

Note: In the simulation mode, link libsgx_pclsim.a and not libsgx_pcl.a

Security Considerations

Not Encrypted Sections

The ISV must make sure the ELF sections in Table below do not contain the
ISV IP. The encryption tool will NOT encrypt these sections.

Table 15 Not Encrypted Sections

Section name Description

.shstrtab Sections' names string table. Pointed
by e_shstrndx

.note.sgxmeta Used by the Intel® SGXSDK

.bss and .tbss Zero initialized data

.dynamic Section is required to construct dyn_
info by function parse_dyn at
elfparser.cpp

.dynsym, .dynstr, .rela.dyn, .rela.plt Sections hold the content pointed by
entries with index DT_SYMTAB,
DT_STRTAB, DT_REL and DT_
PLTREL in dyn_info

.plctbl, .nipx, .nipd, .niprod Sections which contain Intel® SGX PCL

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 82 -

code and data (nip stands for Non IP)

Debug only:

.comment, .debug_abbrev, .debug_
aranges, .debug_info, .debug_line,
.debug_loc,
.debug_ragnes, .debug_str, .symtab,
.strtab, .gnu_version_d

These sections remain plain text to
enable / ease debugging.

Writable Sections and Segments

The Intel® SGX PCL encryption tool sets the Writable bit in the section flags of
the encrypted ELF sections and in the segment flags of ELF segments that
include the encrypted ELF sections. As a result, all pages that belong to such
ELF segments or sections, including portions of the enclave code and read-
only data, are writable at enclave runtime.

Intel® SGX PCL Cryptographic Standards

At build time, the encryption tool uses:

• SHA256 to compute the hash of the symmetric encryption/decryption key
and embeds it into the IP enclave binary.

• AES-GCM-128 to encrypt-in-place the IP sections.

• RDRAND to generate the per-section random IVs.

At run time the Intel® SGX PCL uses:

• SHA256 to compute the hash of the unsealed symmetric encryp-
tion/decryption key. The Intel® SGX PCL verifies the integrity of the symmetric
encryption/decryption key by comparing its hash with the one embedded in
the IP enclave binary at build time.

• AES-GCM-128 to decrypt-in-place the IP sections.

Intel® SGX PCL Crypto Code Snippets from OpenSSL

Intel® SGX PCL library includes code snippets from OpenSSL1.1.0g (with slight
modifications to enable running with Intel® SGX PCL). Those snippets are now
part of the ISV’s IP enclave’s TCB. If in the future, an identified vulnerability in
OpenSSL1.1.0g requires modification to a file from which these snippets ori-
ginate, ISV must update the snippets accordingly.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 83 -

Integrating Intel® SGX PCL with an existing Intel® SGX solution
Integrating an ISV enclave with the Intel® SGX PCL requires the ISV to apply
modifications to the ISV solution:

1. Apply modifications to the IP enclave.
2. Apply modifications to the enclave application that loads the enclave(s).
3. Create an additional enclave, the Sealing Enclave.

Note: Steps above are already applied to SampleEnclavePCL. See
README.md for instructions on building and running the sample code.

Disclaimer: This chapter presents a pseudo code, which is not secure, not com-
plete, and it will not compile. For the complete code, see SampleEnclavePCL.

Modifications to IP Enclave

l Add the following code to the IP Enclave link flags:
-Wl,--whole-archive -l<pcl_archive_name> -Wl,--no-
whole-archive
where <pcl_archive_name> is sgx_pcl and sgx_pclsim for the HW and
simulation modes, respectively.

l Add the following stage to the build flow:
ifneq ($(SGX_IPLDR),0)
PCL_ENCRYPTION_TOOL := sgx_encrypt
PCL_KEY := key.bin
ifeq ($(SGX_DEBUG),1)
ENCRYPTION_TOOL_FLAGS := -d
endif
$(ENCRYPTED_ENCLAVE_NAME): $(ENCLAVE_NAME) $(PCL_ENCRYPTION_TOOL)
$(PCL_ENCRYPTION_TOOL) -i $< -o $@ -k $(PCL_KEY) $(ENCRYPTION_
TOOL_FLAGS)
endif

o In the debug mode, add the ‘-d’ option. It prevents the tool from
encrypting or zeroing sections used for debugging.

l Modify the build flow so that the sealed enclave is generated from the
encrypted enclave.

l No modifications are required for the IP Enclave source code.

Modifications to Enclave Application

Required steps:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 84 -

1. Get the sealed blob:
l If a file containing the sealed blob exists (for example, it was gen-

erated during the previous runs), read it.
l If the file does not exist:

o Create the Sealing Enclave.
o Use the Sealing Enclave to provision the decryption key to

the platform and seal it.
o Save the sealed key to a file on the platform for future use.

2. Load the encrypted enclave using
sgx_create_enclave_ex and provide it with the sealed blob.

Pseudo code:

#define SEALED_KEY_FILE_NAME "SealedKey.bin"

#define IP_ENCLAVE_FILE_NAME "IPEnclave.signed.so"

#define SEALING_ENCLAVE_FILE_NAME "SealingEnclave.signed.so"

uint8_t* sealed_key;

size_t sealed_key_size;

if(file_exists(SEALED_KEY_FILE_NAME))

{

// Sealed key file exists, read it into buffer:

ReadFromFile(SEALED_KEY_FILE_NAME, sealed_key);

}

else

{

/*

* Sealed key file does not exist. Create it:

* 1. Create the Sealing Enclave

* 2. Use the Sealing Enclave to provision the decryption key

* onto the platform and seal it.

* 3. Save the sealed key to a file for future uses

*/

// 1. create the sealing enclave

sgx_create_enclave(

SEALING_ENCLAVE_FILE_NAME,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 85 -

debug,

&token,

&updated,

&seal_enclave_id,

NULL);

/*

* 2. Use the Sealing Enclave to provision the decryption key

* onto the platform and seal it:

*/

ecall_get_sealed_key_size(seal_enclave_id, &sealed_key_size);

sealed_key = (uint8_t*)malloc(sealed_key_size);

ecall_get_sealed_key(seal_enclave_id, sealed_key, sealed_key_size);

// 3. Save the sealed key to a file for future uses

WriteToFile(SEALED_KEY_FILE_NAME, sealed_key);

}

// Load the encrypted enclave, providing the sealed key:

const void* ex_features[32] = {};

ex_features[SGX_CREATE_ENCLAVE_EX_PCL_BIT_IDX] = sealed_key;

sgx_create_enclave_ex(

IP_ENCLAVE_FILE_NAME,

debug,

&token,

&updated,

ip_enclave_id,

NULL,

ex_features,

SGX_CREATE_ENCLAVE_EX_PCL);

Sealing Enclave

Intel® SGX PCL Decryption key provisioning

This section describes methods for creating and using the ISV Sealing Enclave.
The ISV Sealing enclave provisions the decryption key to the user local
machine and seals it.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 86 -

To securely transport the decryption AES key to the user local machine, the
ISV Sealing enclave needs to attest to the ISV server, generate a secure ses-
sion, and use it to provision the decryption key.

Sending the Intel® SGX PCL Decryption Key from ISV Server to Local Plat-
form

The Remote Attestation sample in this document illustrates and describes in
details how to initiate a remote attestation session with an ISV server.

Remote attestation enables the server and the client to share secret keys.
Such keys can be used to generate a secure session (for example, using TLS)
between the ISV server and the Sealing enclave. The secure session can then
be used to securely provision the decryption key.

Sealing the Intel® SGX PCL Decryption Key

The sealing sample code in this document illustrates how to seal a secret. By
default, the Intel® SGX SDK seals the secret using MRSIGNER.

Interaction with the Enclave Application

In the pseudo code above, the ISV Sealing Enclave provides the Enclave
Application with the sealed decryption key by implementing the enclave calls
ecall_get_sealed_key_size and ecall_get_sealed_key. This is not an archi-
tectural requirement and ISVs can use their own design.

Mitigations for Processor MMIO Stale Data Vulnerabilities
INTEL-SA-00615 describes four vulnerabilities, each with their own CVE.
These four vulnerabilities are collectively known as Processor MMIO Stale Data
vulnerabilities. The four CVEs are CVE-2022-21123, CVE-2022-21125, CVE-
2022-21127 and CVE-2022-21166. CVE-2022-21127 does not require SW
mitigations for SGX; the latest processor microcode alone is sufficient. The
other CVEs require both processor microcode and SW to mitigate.

Because the Intel SGX security model does not trust the OS, a malicious OS
could map MMIO memory into the untrusted memory space of an application
that uses one or more Intel SGX enclaves. This could include the region of
untrusted memory used for parameter passing to/from ECALLs and OCALLs, or
any external buffers that an enclave might use to communicate with its applic-
ation. If the malicious OS did such a mapping, then when the enclave wrote to
this memory, it could propagate the stale data in its fill buffers into the uncore,
where it could later be extracted by malicious software.

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21123
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21125
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21127
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21127

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 87 -

The mitigations below assume that Intel HT Technology is disabled to ensure
that once the fill buffers are overwritten, a sibling thread cannot repopulate
them. The necessary mitigation depends on how the enclave is accessing the
non-enclave memory regions. See the Processor MMIO Stale Data vul-
nerabilities technical paper for more information.

Beginning with version 2.17.0.3, Intel has updated the Intel SGX SDK for Linux
and the Edger8r tool included in the SDK to help prevent fill buffer data
exposure through the code generated by the Edger8r tool. Similarly, the Intel
SGX SDK now includes updates that will help prevent fill buffer data exposure
through the code used by enclaves that use the switchless mode supported
by the Intel SDK.

For enclaves that write to memory outside the enclave using code that isn’t
associated with ECALLs or OCALLs and for enclaves that use the EDL [user_
check] attribute or that use nested pointers, SGX developers must add mit-
igations to their enclave source code to help prevent fill buffer data exposure.
In order to mitigate, all writes to untrusted memory (that is, memory outside
the enclave) must

1. either be preceded by the VERW instruction (with memory, not register,
operand) and followed by the MFENCE; LFENCE instruction sequence
or

2. must be in multiples of 8 bytes, aligned to an 8-byte boundary.

Specifically, for narrow (not a multiple of 8 bytes) or unaligned enclave writes
to untrusted memory, the recommended mitigation is, for the narrow, one-
byte case:

; rdi contains the write address outside the
enclave

SUBQ $8, %rsp ; assume stack exists and at least
8 bytes of stack available

MOVW %ds, (%rsp)

VERW (%rsp)

MOVB %al, (%rdi) ; narrow write to memory out-
side the enclave

MFENCE

LFENCE

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 88 -

ADDQ $8, %rsp

Note that the VERW instruction updates the ZF bit in the EFLAGS register, so
exercise caution when using the above sequence in-line in existing code. Note
also that the latest processor microcode has additions to VERW that are neces-
sary for VERW to clear the fill buffers in the above sequence.

Mitigating a narrow or unaligned write to memory outside the enclave
requires the instruction that does the write to be a single memory operand
instruction; MOVS or REP MOVS, for example, cannot be used (unless the asso-
ciated writes are all multiples of eight bytes and aligned). Read-modify-write
instructions like ADD or even CMPXCHG can be treated like single memory
operand write instructions, that is, add the mitigation sequence if the memory
operand is narrow or unaligned. For example, for CMPXCHG with a 32-bit
memory operand:

; rdi contains the address outside the enclave

; ecx contains the “new” value

; eax contains the “compare” value

SUBQ $8, %rsp ; assume stack exists and at least
8 bytes of stack available

MOVW %ds, (%rsp)

VERW (%rsp)

LOCK CMPXCHGL %ecx, (%rdi)

MFENCE

LFENCE

ADDQ $8, %rsp

The latest Intel SGX SDK includes new utility functions to facilitate SGX
developers mitigating their code: memcpy_verw, memcpy_verw_s, mem-
move_verw, memmove_verw_s, memset_verw and memset_verw_s.
These functions include width and alignment checks and will use the mit-
igation sequence as needed based on the results of these checks. They do not
check whether the destination (write) address is outside the enclave; this is
the responsibility of the calling code.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 89 -

SGX developers should increment the ISVSVN values of their enclaves with
the mitigations for Processor MMIO Stale Data Vulnerabilities (INTEL-SA-
00615).

Addressing Stale Data Read from Legacy xAPIC
This section describes changes introduced in version 2.17.101.1 of the Intel
SGX SDK for Linux.

INTEL-SA-00657 describes an issue, named Stale Data Read from Legacy
xAPIC, that affects SGX. As explained here in the associated technical paper,
https://www.in-
tel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/stale-data-read-from-xapic.html, Intel has
provided a microcode update (MCU) to help mitigate the issue. However and
as the paper explains, the best security for some enclaves may also require
enclave SW changes. In the future, Intel expects to provide an additional MCU
that will mitigate the issue such that enclave SW changes to help mitigate the
issue will no longer be needed. This section describes:

1. changes in the Intel SGX SDK related to helping mitigate the issue.
2. changes that SGX developers may need to make to their enclaves, bey-

ond rebuilding their enclaves with the new SDK, to achieve better secur-
ity.

The SDK changes help ensure that enclave reads of memory outside the
enclave are 8-byte-aligned and a multiple of 8 bytes in size (henceforth, safe
reads). The new code does this through simple double-buffering where the
destination of a safe read is a temporary buffer (the double-buffer). Then, this
temporary buffer serves as the source of the original read. For example, sup-
pose an enclave needs to read 100 bytes of memory outside the enclave, start-
ing at address 0x10000001. One safe way to do this is for the enclave to read
104 (=8*13) bytes in multiples of 8 bytes, starting at address 0x10000000, to
a temporary buffer inside the enclave. Then, copy 100 bytes starting at the
second byte (offset 1) of the temporary buffer to the original, non-temporary
destination buffer. (Another safe way would recognize that the 88 bytes start-
ing at 0x10000008 do not need to pass through a temporary buffer.)

The new SDK includes an updated Edger8r tool that generates code that does
safe reads of memory outside the enclave. The updated SDK also has updated
memcpy and memcpy_s functions. The updated versions check whether the
source and/or destination buffers are outside the enclave and operate

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/stale-data-read-from-xapic.html

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 90 -

appropriately based on the results of these checks. (Checking the destination
buffer is associated with the mitigation for INTEL-SA-00615.) The updated
SDK also introduces a memcpy_nochecks function that doesn’t check where
the buffers are. memcpy_nochecks can be used in cases where it’s known
that source and destination buffers are both inside the enclave.

For enclaves that read memory outside the enclave using code that isn’t asso-
ciated with ECALLs or OCALLs and for enclaves that use the EDL [user_
check] attribute or that use nested pointers, the fact that the new Edger8r
generates code with mitigations doesn’t help. In these cases, SGX developers
will still get INTEL-SA-00657 mitigations if they use memcpy or memcpy_s to
do the reads. Otherwise, developers of code like this may need to change
their code to either mimic the behavior in the updated memcpy functions or
convert assignment statements that cause reads of memory outside the
enclave to memcpy or memcpy_s calls.

Addressing MXCSR Configuration Dependent Timing
Data Operand Independent Timing ISA Guidance describes MXCSR Con-
figuration Dependent Timing (MCDT) where SW is needed to help ensure
instruction timing that is independent of the values of the instruction’s data
operands.

If the intended operation of an Intel SGX enclave, for the lifetime of the
enclave, is achievable with MXCSR=0x1FBF, then any loads of MXCSR (via
LDMXCSR, XRSTOR, etc.) should be of 0x1FBF. Enclaves that don’t use SSE*
floating point instructions fall into this category. There should be an LFENCE
between any load of MXCSR (even of 0x1FBF) and subsequent use of any
affected instruction (see Data Operand Independent Timing ISA Guidance).

If an enclave is compatible with MXCSR=0x1FBF and uses any of the affected
instructions, then the beginning of each enclave ECALL should set MXCSR to
0x1FBF and then execute an LFENCE instruction. The Intel SGX SDK has been
changed to do this alleviating the need for SGX developers using the Intel
SGX SDK to do so.

If the intended operation of an Intel SGX enclave is not achievable with MXCSR-
R=0x1FBF, then the following mitigation sequence should be used:

; at this point, MXCSR != 0x1FBF

STMXCSR save_val

LDMXCSR value_0x1fbf

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 91 -

LFENCE

; Constant-time code using instructions affected
by MCDT

LFENCE

LDMXCSR save_val

Enable CVE-2020-0551 Mitigation
The Intel® SGX SDK facilitates mitigation of CVE-2020-0551, aka LVI (Load
Value Injection). The Intel® SGX SDK supports two mitigation levels. One level
addresses all instructions vulnerable to LVI. This level is called CVE-2020-
0551-Load (Load, for short). The second mitigation level addresses vulnerable
control flow instructions only and is called CVE-2020-0551-CF (CF, for short).

For more information on LVI, see https://nvd.nist.gov/vuln/detail/CVE-2020-
0551 and https://software.intel.com/security-software-guidance/software-
guidance/load-value-injection.

Mitigation enabled Trust Libraries
The Intel® SGX SDK includes three sets of trusted libraries: Unmitigated, Load
and CF.

Mitigation Level Path
Unmitigated [Intel SGX SDK Install Path]/lib64/

Load [Intel SGX SDK Install Path]/lib64/cve_
2020_0551_load

CF [Intel SGX SDK Install Path]/lib64/cve_
2020_0551_cf

The MITIGATION-CVE-2020-0551 make variable is used to select the desired
set of libraries.

MITIGATION-CVE-2020-0551 make variable
value

Which set of trusted lib-
raries?

Not set Unmitigated

LOAD Load

CF CF

See the Intel® SGX SDK SampleEnclave sample ([Intel SGX SDK
Install Path]/SampleCode/SampleEnclave) for an example.

https://nvd.nist.gov/vuln/detail/CVE-2020-0551
https://software.intel.com/security-software-guidance/software-guidance/load-value-injection

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 92 -

Note that the MITIGATION-CVE-2020-0551 make variable affects how your
code is built by adding the same mitigations to this code. This is generally
what is desired. However, it is possible to use a mitigation level for the code
that is different from the mitigation level of the Intel® SGX SDK trusted lib-
raries. Before describing how you can do this, the necessary tools and their
options must be described.

Required tools:

l GCC 7.3 or higher.
l GNU Binutils 2.36 or higher that include the mitigation support. Until a

critical mass of Linux* distributions include 2.36 or higher, Intel will post
the required Binutils tools here: 01.org distribution. The latest GNU
Binutils can be found here: Binutils-GNU Project - Free Software Found-
ation.

Required options:

Load mitigation level CF mitigation level
GCC -mindirect-branch-register

-mfunction-return=thunk-extern

GNU assem-
bler, as

-mlfence-after-
load=yes

-mlfence-before-
ret=not

-mlfence-before-indirect-
branch=register

-mlfence-before-ret=not

If you use a mitigation level that is different from the mitigation level of the
Intel® SGX SDK trusted libraries, you must do the following:

l Do not use the MITIGATION-CVE-2020-0551 make variable.

l Specify exactly which Intel® SGX SDK trusted libraries to use.

l Use the options in the table above as appropriate.

Create CVE-2020-0551 Mitigation enabled trusted (enclave) project
Users can refer to [Intel SGX SDK Install Path]
SampleCode/SampleEnclave to create CVE-2020-0551 mitigation
enabled new projects.

https://download.01.org/intel-sgx/latest/linux-latest/
https://www.gnu.org/software/binutils/

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 93 -

There are mainly three changes in the Makefile compared with the previous
version of SampleEnclave:

l Include buildenv.mk.

l Append MITIGATION_CFLAGS to Enclave_C_Flags and Enclave_
Cpp_Flags

l Append MITIGATION_LDFLAGS to Enclave_Link_Flags

l Replace SGX_LIBRARY_PATH to SGX_TRUSTED_LIBRARY_PATH.

Users can follow the same way to create CVE-2020-0551 mitigation enabled
trust projects.

Enable Mitigation for existing trusted project
Users can refer to [Intel SGX SDK Install Path]
SampleCode/SampleEnclave to create CVE-2020-0551 mitigation
enabled new projects.

There are mainly three changes in the Makefile compared with the previous
version of SampleEnclave:

l Include buildenv.mk.

l Append MITIGATION_CFLAGS to Enclave_C_Flags and Enclave_
Cpp_Flags.

l Append MITIGATION_LDFLAGS to Enclave_Link_Flags

l Replace SGX_LIBRARY_PATH to SGX_TRUSTED_LIBRARY_PATH.

Users can follow the same way to enable the CVE-2020-0551 mitigation for
the existing trust projects.

Protection Keys in SGX
The Protection Keys feature provides an additional mechanism by which 4-
level paging and 5-level controls access to user-mode addresses. The pro-
tection key is located in bits 62:59 of the paging-structure entry that mapped
the page containing the linear address. Software can set a mask in the PKRU
(protection key rights for user pages) register, to either disable access or dis-
able write to the linear address mapped by the PTE. The PKRU register is a
32-bit register with the following format:

For each i (0 ≤ i ≤ 15), PKRU[2i] is the access-disable bit for protection key i
(ADi) and PKRU[2i+1] is the write-disable bit for protection key i (WDi).

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 94 -

The Protection Keys feature offers an attacker an easy mechanism to trace
data accesses at a page granularity inside SGX enclaves. To mitigate this
potential attack inside SGX enclaves, the sgx_sign provides a field PKRU in
the enclave configuration file, which could be used to enable or disable the
Protection Keys inside enclave. If the enclave is signed and loaded as Pro-
tection Keys enabled, the tRTS will set the PKRU register to 0 on each root
ecall. This would prevent an attacker from tracing the data accesses inside
enclave. The tRTS also provides two APIs for users to read and write the PKRU
register inside enclave. Refer to section Enclave Configuration File and section
Intel® Software Guard Extensions Helper Functions for details.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 95 -

Intel® Software Guard Extensions SDK Sample Code
After installing the Intel® Software Guard Extensions SDK, you can find the
sample code at [Intel SGX SDK Install Path]SampleCode.

l The SampleEnclave project shows how to create an enclave.

l The Cxx11SGXDemo project shows how to use C++11 library inside the
enclave.

l The LocalAttestation project shows how to use the Intel Elliptical Curve
Diffie-Hellman key exchange library to establish a trusted channel
between two enclaves running on the same platform.

l The RemoteAttestation project shows how to use the Intel remote attest-
ation and key exchange library in the remote attestation process.

Sample Enclave
The project SampleEnclave shows you how to write an enclave from scratch.
This topic demonstrates the following basic aspects of enclave features:

l Initialize and destroy an enclave

l Create ECALLs or OCALLs

l Call trusted libraries inside the enclave

The source code is shipped with an installation package of the Intel® SGX SDK
in [Intel SGX SDK Install Path]SampleCode/SampleEnclave. A
Makefile is provided to build the SampleEnclave on Linux.

NOTE:
If the sample project is located in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

Initialize an Enclave
Before establishing any trusted transaction between an application and an
enclave, the enclave itself needs to be correctly created and initialized by call-
ing sgx_create_enclave provided by the uRTS library.

Saving and Retrieving the Launch Token

Starting the Intel® SGX 2.4 release, you do not need to pass and store the
launch token anymore.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 96 -

Before the Intel® SGX 2.4 release, a launch token needs to be passed to sgx_
create_enclave for enclave initialization. If the launch token was saved in a pre-
vious transaction, it can be retrieved and used directly. Otherwise, you can
provide an all-0 buffer. sgx_create_enclave will attempt to create a valid
launch token if the input is not valid. After the enclave is correctly created and
initialized, you may need to save the token if it has been updated. The fourth
parameter of sgx_create_enclave indicates whether or not an update has
been performed.

The launch token should be saved in a per-user directory or a registry entry in
case it would be used in a multi-user environment.

ECALL/OCALL Functions
This sample demonstrates basic EDL syntax used by ECALL/OCALL functions,
as well as using trusted libraries inside the enclave. You may see Enclave Defin-
ition Language Syntax for syntax details and Trusted Libraries for C/C++ sup-
port.

Destroy an Enclave
To release the enclave memory, you need to invoke sgx_destroy_enclave
provided by the sgx_urts library. It will recycle the EPC memory and untrus-
ted resources used by that enclave instance.

Power Transition
If a power transition occurs, the enclave memory will be removed and all the
enclave data will be inaccessible. Consequently, when the system is resumed,
each of the in-process ECALLS and the subsequent ECALLs will fail with the
error code SGX_ERROR_ENCLAVE_LOST which indicates the enclave is lost
due to a power transition.

An Intel® Software Guard Extensions project should have the capability to
handle the power transition which might impact its behavior. The project
named PowerTransition describes one method of developing Intel® Software
Guard Extensions projects that handle power transitions. See ECALL-Error-
Code Based Retry for more info.

PowerTransition demonstrates the following scenario: an enclave instance is
created and initialized by one main thread and shared with three other child
threads; The three child threads repeatedly ECALL into the enclave, manip-
ulate secret data within the enclave and backup the corresponding encrypted
data outside the enclave; After all the child threads finish, the main thread

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 97 -

destroys the enclave and frees the associated system resources. If a power
transition happens, one and only one thread will reload the enclave and
restore the secret data inside the enclave with the encrypted data that was
saved outside and then continues the execution.

The PowerTransition sample code is released with Intel® SGX SDK in [Intel
SGX SDK Install Path]SampleCode/PowerTransition. A Makefile
is provided to build the sample code on Linux* OS.

NOTE:
If the sample project locates in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

ECALL-Error-Code Based Retry
After a power transition, an Intel® SGX error code SGX_ERROR_ENCLAVE_
LOST will be returned for the current ECALL. To handle the power transition
and continue the project without impact, you need to destroy the invalid
enclave to free resources first and then retry with a newly created and ini-
tialized enclave instance, as depicted in the following figure.

Figure 5 Power Transition Handling Flow Chart

ECALLs in Demonstration
PowerTransition demonstrates handling the power transition in two types of
ECALLs:

1. Initialization ECALL after enclave creation.
2. Normal ECALL to manipulate secrets within the enclave.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 98 -

Initialization ECALL after Enclave Creation

PowerTransition illustrates one initialization ECALL after enclave creation
which is shown in the following figure:

Figure 6 Enclave Initialization ECall after Enclave Creation Flow Chart

sgx_create_enclave is a key API provided by the uRTS library for enclave cre-
ation. For sgx_create_enclave, a mechanism of power transition handling is
already implemented in the uRTS library. Therefore, it is unnecessary to manu-
ally handle power transition for this API.

NOTE:
To concentrate on handling a power transition, PowerTransition assumes the
enclave file and the launch token are located in the same directory as the
application. See Sample Enclave for how to store the launch token properly.

Normal ECALL to Process Secrets within the Enclave

This is the most common ECALL type into an enclave. PowerTransition demon-
strates the power transition handling for this type of ECALL in a child thread
after the enclave creation and initialization by the main thread, as depicted in
the figure below. Since the enclave instance is shared by the child threads, it is
required to make sure one and only one child thread to re-creates and re-

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 99 -

initializes the enclave instance after the power transition and the others utilize
the re-created enclave instance directly. PowerTransition confirms this point
by checking whether the Enclave ID is updated.

Figure 7 Regular ECALL Flow Chart

NOTE:
During the ECALL process, it is recommended to back up the confidential data
as cipher text outside the enclave frequently. Then we can use the backup
data to restore the enclave to reduce the power transition impacts.

C++11 Demo
The project Cxx11SGXDemo is designed to illustrate some of the C++11 lib-
rary features supported inside the enclave provided by the Intel® SGX SDK
and the compiler features supported by the GCC. This sample provides prac-
tical use cases for each of the C++11 features currently supported.

The code is shipped with the Intel SGX SDK and is located in [Intel SGX
SDK Install Path]SampleCode/Cxx11SGXDemo. A Makefile is
provided to build the Cxx11SGXDemo on Linux.

NOTE:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 100 -

If the sample project is located in a system directory, administrator privileges
are required to open the project. You can copy the project folder to your dir-
ectory if an administrator permission cannot be granted.

The sample covers a subset of C++11 features inside the enclave as listed in
the table below.

Table 16 Overview of C++11 features covered

Headers #include <typeinfo>

#include <functional>

#include <algorithm>

#include <unordered_set>

#include <unordered_map>

#include <initializer_list>

#include <tuple>

#include <memory>

#include <atomic>

#include <mutex>

#include <condition_variable>

#include <map>
Classes std::function, std::all_of, std::any_of, std::none_of,

std::initializer_list, std::unordered_set,

std::unordered_map, std::unordered_multiset,

std::unordered_multimap, std::tuple,

std::shared_ptr, std::unique_ptr, std::auto std::mutex,

std::condition_variable
Compiler fea-
tures

lambda expressions, auto, decltype,

strongly typed enum classes,

range-based for statements,

static_assert, new virtual function controls,

delegating constructors, variadic templates,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 101 -

substitution failure is not an error (SFINAE),

rvalue references and move semantics, nullptr type

C++14 Demo
The project Cxx14SGXDemo is designed to illustrate some of the C++14 lib-
rary features supported inside the enclave that is provided by the Intel® SGX
SDK and the compiler features hat are supported by the GCC. This sample
provides practical use cases for each of the C++14 features that are currently
supported.

The code is shipped with the Intel SGX SDK and is located in [Intel SGX
SDK Install Path]SampleCode/Cxx14SGXDemo. A Makefile is
provided to build the Cxx14SGXDemo on Linux.

NOTE:
If the sample project is located in a system directory, administrator privileges
are required to open the project. You can copy the project folder to your dir-
ectory if an administrator permission cannot be granted.

The sample covers a subset of C++14 features inside the enclave as listed in
the table below.

Table 17 Overview of C++14 features covered

Classes std::make_unique, std::integral_constant,

std::integer_sequence, std::cbegin, std::cend,

std::crbegin, std::crend,

std::exchange, std::is_final, std:quoted,

std::equal new overload, std::mismatch new overload

std::is_permutation new overload,

standard user-defined literals
Compiler fea-
tures

heterogeneous lookup, function return type deduction,

variable template, binary literals, digit separators,

generic lambdas, lambda capture expressions,

attribute [[deprecated]], aggregate member initialization,

alternate type deduction on declaration,

relaxed constexpr restrictions

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 102 -

Attestation
In the Intel® Software Guard Extensions architecture, attestation refers to the
process of demonstrating that a specific enclave was established on the plat-
form. The Intel® SGX Architecture provides two attestation mechanisms:

l One creates an authenticated assertion between two enclaves running
on the same platform referred to as local attestation.

l The second mechanism extends local attestation to provide assertions
to 3rd parties outside the platform referred to as remote attestation.
The remote attestation process leverages a quoting service.

The Intel® Software Guard Extensions SDK provides APIs used by applications
to implement the attestation process.

Local Attestation
Local attestation refers to two enclaves on the same platform authenticating
to each other using the Intel SGX REPORT mechanism before exchanging
information. In an Intel® SGX application, multiple enclaves might collaborate
to perform certain functions. After the two enclaves verify the counterpart is
trustworthy, they can exchange information on a protected channel, which typ-
ically provides confidentiality, integrity and replay protection. The local attest-
ation and protected channel establishment uses the REPORT based Diffie-
Hellman Key Exchange* protocol.

You can find a sample solution shipped with the Intel® Software Guard Exten-
sions SDK at [Intel SGX SDK Install Path]SampleCode/Local_
Attestation directory. A Makefile is provided to compile the project.

NOTE:
If the sample project locates in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

The sample code shows an example implementation of local attestation,
including protected channel establishment and secret message exchange
using enclave to enclave function call as an example.

Diffie-Hellman Key Exchange Library and Local Attestation Flow

The local attestation sample in the SDK uses the Diffie-Hellman (DH) key
exchange library to establish a protected channel between two enclaves. The
DH key exchange APIs are described in sgx_dh.h. The key exchange library

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 103 -

is part of the Intel® SGX application SDK trusted libraries. It is statically linked
with the enclave code and exposes APIs for the enclave code to generate and
process local key exchange protocol messages. The library is combined with
other libraries and is built into the final library called libsgx_tservice.a that is
part of the SDK release.

Figure 8 Local Attestation Flow with the DH Key Exchange Library

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 104 -

The figure above represents the usage of DH key exchange library. A local
attestation flow consists of the following steps:

In the figure, ISV Enclave 1 is the initiator enclave and ISV Enclave 2 is the
responder enclave.

1. Initiator enclave calls the Intel ECDH key exchange library to initiate the
session with the initiator role.

2. The initiator enclave does an OCALL into the untrusted code requesting
the Diffie-Hellman Message 1 and session id.

3. The untrusted code does an ECALL into the responder enclave.
4. Responder enclave in turn calls the ECDH key exchange library to initiate

the session with the responder role.
5. Responder enclave calls the key exchange library to generate the DH

Message 1 ga || TARGETINFO.
6. DH Message 1 is sent back from the responder enclave to the initiator

enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

7. Initiator enclave processes the Message 1 using the key exchange library
API and generates the DH Message 2 gb||[Report Enclave 1(h
(ga || gb))]SMK.

8. DH Message 2 is sent to the untrusted side through an OCALL.
9. The untrusted code does an ECALL into the responder enclave giving it

the DH Message 2 and requesting the DH Message 3.
10. Responder enclave calls the key exchange library API to process the DH

Message 2 and generates the DH Message 3 [ReportEnclave2(h(gb
|| ga)) || Optional Payload]SMK.

11. DH Message 3 is sent back from the responder enclave to the initiator
enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

12. Initiator enclave uses the key exchange library to process the DH Mes-
sage 3 and establish the session.

13. Messages exchanged between the enclaves are protected by the AEK.

Diffie-Hellman Key Exchange Library and Local Attestation 2.0

the Diffie-Hellman (DH) key exchange library also exposes DH key exchange
2.0 APIs for the enclave code to generate and process local key exchange pro-
tocol messages. To use DH key exchange 2.0 APIs which are also described in

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 105 -

sgx_dh.h,. add SGX_USE_LAv2_INITIATOR to Preprocessor Defin-
itions option.

A local attestation 2.0 flow consists of the steps in previous section except 7
and 10:

1. ISV initiator enclave calls the Intel ECDH key exchange library to initiate
the session with the initiator role.

2. The initiator enclave does an OCALL into the untrusted code requesting
the Diffie-Hellman Message 1 and session id.

3. The untrusted code does an ECALL into the responder enclave .
4. The responder enclave in turn calls the ECDH key exchange library to ini-

tiate the session with the responder role.
5. The responder enclave calls the key exchange library to generate DH

Message 1 ga || TARGETINFO .
6. DH Message 1 is sent back from the responder enclave to the initiator

enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

7. The initiator enclave processes the Message 1 using the key exchange
library 2.0 API and generates the DH Message 2 gb||[Report
Enclave 1(h(proto_spec || gb))]SMK and report_data
replaced with proto_specin which proto_spec is 'SGX LA' || Ver
|| Rev || TARGET_SPEC || padding.

8. DH Message 2 is sent to the untrusted side through an OCALL.
9. The untrusted code does an ECALL into the responder enclave giving it

the DH Message 2 and requesting the DH Message 3.
10. The responder enclave calls the key exchange library 2.0 API to process

the DH Message 2 and generates the DH Message 3 [Report
Enclave2(h(ga || proto_spec)) || Optional Payload ||
ga]SMK.

11. DH Message 3 is sent back from the responder enclave to initiator
enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

12. The initiator enclave uses the key exchange library to process the DH
Message 3 and establish the session.

13. Messages exchanged between the enclaves are protected by the AEK.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 106 -

Protected Channel Establishment

The following figure illustrates the interaction between two enclaves, namely
the source enclave and the destination enclave, to establish a session. The
application initiates a session between the source enclave and the destination
enclave by doing an ECALL into the source enclave, passing in the enclave id of
the destination enclave. Upon receiving the enclave id of the destination
enclave, the source enclave does an OCALL into the core untrusted code
which then does an ECALL into the destination enclave to exchange the mes-
sages required to establish a session using ECDH Key Exchange* protocol.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 107 -

Figure 9 Secure Channel Establishment Flow with the DH Key Exchange
Library

Secret Message Exchange and Enclave to Enclave Call

The following figure illustrates the message exchange between two enclaves.
After the establishment of the protected channel, session keys are used to
encrypt the payload in the message(s) being exchanged between the source
and destination enclaves. The sample code implements interfaces to encrypt

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 108 -

the payload of the message. The sample code also shows the implementation
of an enclave calling a function from another enclave. Call type, target function
ID, total input parameter length and input parameters are encapsulated in the
payload of the secret message sent from the caller (source) Enclave and the
callee (destination) enclave. As one enclave cannot access memory of another
enclave, all input and output parameters, including data indirectly referenced
by a parameter needs to be marshaled across the two enclaves. The sample
code uses Intel® SGX SDK trusted cryptographic library to encrypt the pay-
load of the message. Through such encryption, message exchange is just the
secret and in case of the enclave to enclave call is the marshaled destination
enclave’s function id, total parameter length and all the parameters. The des-
tination enclave decrypts the payload and calls the appropriate function. The
results of the function call are encrypted using the session keys and sent back
to the source enclave.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 109 -

Figure 10 Secret Message Exchange Flow with the DH Key Exchange Library

Remote Attestation
Generally speaking, Remote Attestation is the concept of a HW entity or of a
combination of HW and SW gaining the trust of a remote provider or producer
of some sort. With Intel® SGX, Remote Attestation software includes the app’s

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 110 -

enclave and the Intel-provided Quoting Enclave (QE) and Provisioning Enclave
(PvE). The attestation HW is the Intel® SGX enabled CPU.

Remote Attestation alone is not enough for the remote party to be able to
securely deliver their service (secrets or assets). Securely delivering services
also requires a secure communication session. Remote Attestation is used dur-
ing the establishment of such a session. This is analogous to how the familiar
SSL handshake includes both authentication and session establishment.

The Intel® Software Guard Extensions SDK includes sample code showing:

l How an application enclave can attest to a remote party.

l How an application enclave and the remote party can establish a secure
session.

The SDK includes a remote session establishment or key exchange (KE) lib-
raries that can be used to greatly simplify these processes.

You can find the sample code for remote attestation in the directory [Intel
SGX SDK Install Path]SampleCode/RemoteAttestation.

NOTE:
To run the sample code in the hardware mode, you need to access to Internet.

NOTE:
If the sample project is located in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

Intel® SGX uses an anonymous signature scheme, Intel® Enhanced Privacy ID
(Intel® EPID), for authentication (for example, attestation). The supplied key
exchange libraries implement a Sigma-like protocol for session establishment.
Sigma is a protocol that includes a Diffie-Hellman key exchange, but also
addresses the weaknesses of DH. The protocol Intel® SGX uses differs from the
Sigma protocol that’s used in IKE v1 and v2 in that the Intel® SGX platform
uses Intel® EPID to authenticate while the service provider uses PKI. (In Sigma,
both parties use PKI.) Finally, the KE libraries require the service provider to
use an ECDSA, not an RSA, key pair in the authentication portion of the pro-
tocol and the libraries use ECDH for the actual key exchange.

Remote Key Exchange (KE) Libraries

The RemoteAttestation sample in the SDK uses the remote KE libraries as
described above to create a remote attestation of an enclave, and uses that

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 111 -

attestation during establishment of a secure session (a key exchange).

There are both untrusted and trusted KE libraries. The untrusted KE library is
provided as a static library, libsgx_ukey_exchange.a. The Intel®
SGX application needs to link with this library and include the header file
sgx_ukey_exchange.h, containing the prototypes for the APIs that the KE
trusted library exposes.

NOTE:
If you are unable to use either of the two pre-built untrusted key exchange
static libraries, the source code for a sample untrusted key exchange library is
included in the isv_app subfolder of the Remote Attestation sample applic-
ation that is shipped with this SDK.

The trusted KE library is also provided as a static library. As a trusted library,
the process for using it is slightly different than that for the untrusted KE lib-
rary. The main difference relates to the fact that the trusted KE library
exposes ECALLs called by the untrusted KE library. This means that the library
has a corresponding EDL file, sgx_tkey_exchange.edl, which has to be
imported in the EDL file for the application enclave that uses the library. We
can see this in code snippet below, showing the complete contents of app_
enclave.edl, the EDL file for the app enclave in the sample code.

enclave {

from "sgx_tkey_exchange.edl" import *;
include "sgx_key_exchange.h"
include "sgx_trts.h"
trusted {

public sgx_status_t enclave_init_ra(
int b_pse,
[out] sgx_ra_context_t *p_context);

public sgx_status_t enclave_ra_close(
sgx_ra_context_t context);

};
};

It’s worth noting that sgx_key_exchange.h contains types specific to
remote key exchange and must be included as shown above as well as in the
untrusted code of the application that uses the enclave. Finally, sgx_tkey_
exchange.h is a header file that includes prototypes for the APIs that the
trusted library exposes, but that are not ECALLs, i.e., APIs called by ISV code in
the application enclave.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 112 -

Remote Attestation and Protected Session Establishment

This topic describes the functionality of the remote attestation sample in
detail.

NOTE:
In the sample code, the service provider is modeled as a Shared Object, ser-
vice_provider.so. The sample service provider does not depend on
Intel® SGX headers, type definitions, libraries, and so on. This was done to
demonstrate that the Intel SGX is not required in any way when building a
remote attestation service provider.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 113 -

Figure 11 Remote Attestation and Trust Channel Establishment Flow

An Intel® Software Guard Extensions (Intel® SGX) application would typically
begin by requesting service (for example, media streaming) from a service pro-
vider (SP) and the SP would respond with a challenge. This is not shown in the
figure. The figure begins with the app’s reaction to the challenge.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 114 -

1. The flow starts with the app entering the enclave that will be the end-
point of the KE, passing in b_pse, a flag indicating whether the app/en-
clave uses Platform Services.

2. If b_pse is true, then the isv enclave shall call trusted AE support library
with sgx_create_pse_session() to establish a session with PSE.

3. Code in the enclave calls sgx_ra_init(), passing in the SP’s ECDSA
public key, g_sp_pub_key, and b_pse. The integrity of g_sp_pub_
key is a public key is important so this value should just be built into isv_
enclave.

4. Close PSE session by sgx_close_pse_session() if a session is estab-
lished before. The requirement is that, if the app enclave uses Platform
Services, the session with the PSE must already be established before
the app enclave calls sgx_ra_init().

5. sgx_ra_init() returns the KE context to the app enclave and the
app enclave returns the context to the app.

6. The application calls sgx_get_extended_epid_group_id() and
sends the value returned in p_extended_epid_group_id to the
server in msg0.

7. The server checks whether the extended Intel® EPID group ID is sup-
ported. If the ID is not supported, the server aborts remote attestation.

NOTE:
Currently, the only valid extended Intel® EPID group ID is zero. The
server should verify this value is zero. If the Intel® EPID group ID is not
zero, the server aborts remote attestation.

8. The application calls sgx_ra_get_msg1(), passing in this KE's context.
Figure 3 shows the app also passing in a pointer to the untrusted proxy
corresponding to sgx_ra_get_ga, exposed by the TKE. This reflects
the fact that the names of untrusted proxies are enclave-specific.

9. sgx_ra_get_msg1() builds an S1 message = (ga || GID) and returns it
to the app.

10. The app sends S1 to the service provider (SP) by ra_network_send_
receive(), it will call sp_ra_proc_msg1_req() to process S1 and
generate S2.

11. Application eventually receives S2 = gb || SPID || 2-byte
TYPE || 2-byte KDF-ID || SigSP(gb, ga) || CMACSMK(gb

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 115 -

|| SPID || 2-byte TYPE || 2-byte KDF-ID || SigSP(gb,
ga)) || SigRL.

12. The application calls sgx_ra_proc_msg2(), passing in S2 and the con-
text.

13. The code in sgx_ra_proc_msg2() builds S3 = CMACSMK(M)||M
where M = ga ||PS_SECURITY_PROPERTY|| QUOTE and returns it.
Platform Services Security Information is included only if the app/en-
clave uses Platform Services.

14. Application sends the msg3 to the SP by ra_network_send_
receive(), and the SP verifies the msg3.

15. SP returns the verification result to the application.

At this point, a session has been established and keys exchanged. Whether the
service provider thinks the session is secure and uses it depends on the secur-
ity properties of the platform as indicated by the S3 message. If the platform’s
security properties meet the service provider’s criteria, then the service pro-
vider can use the session keys to securely deliver a secret and the app enclave
can consume the secret any time after it retrieves the session keys by calling
sgx_ra_get_keys() on the trusted KE library. This is not shown in the fig-
ure, nor is the closing of the session. Closing the session requires entering the
app enclave and calling sgx_ra_close() on the trusted KE library, among
other app enclave-specific cleanup.

Remote Attestation with a Custom Key Derivation Function (KDF)

By default, the platform software uses the KDF described in the definition of
the sgx_ra_get_keys API when the sgx_ra_init API is used to generate
the remote attestation context. If the ISV needs to use a different KDF than
the default KDF used by Intel® SGX PSW, the ISV can use the sgx_ra_init_
ex API to provide a callback function to generate the remote attestation keys
used in the SIGMA protocol (SMK) and returned by the API sgx_ra_get_
keys (SK, MK, and VK). The decision to use a different KDF is a policy of the
ISV, but it should be approved by the ISV’s security process.

Debugging a Remote Attestation Service Provider

As an ISV writing the remote attestation service provider, you may want to
debug the message flow. One way to do this would be to provide pre-gen-
erated messages that can be replayed and verified. However, not that S1 mes-
sage = (GID || ga) includes the random component ga generated
inside an enclave. Also, the remote attestation service provider generates a
random public+private key pair as part of its msg2 generation, but without

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 116 -

any interaction with Intel® SGX. Finally, each of these has state or context that
is associated with cryptographic operations and is used to ensure that certain
calls being made are in the correct order and that the state is consistent.
These characteristics help protect the remote attestation flow against attacks,
but also make it more difficult to replay pre-generated messages.

To overcome these, the cryptographic library is modified and used (only) by
the sample service provider. Any time that key generation, signing, or other
operation requests a random number, the number 9 is returned. This means
that the crypto functions from libsample_libcrypto.so are predictable
and cryptographically weak. If we can replay msg1 send from the isv_app,
the sample service_provider. will always generate the exact same msg2.
We now have a sufficient system to replay messages sent by the isv_app
and have it verify that the responses sent by the remote service are the expec-
ted ones.

To replay messages and exercise this verification flow, pass in 1 or 2 as a com-
mand-line argument when running the sample application isv_app. The
isv_app will ignore errors generated by the built-in checks in the Intel SGX.
Developers wishing to debug their remote attestation service provider should
be able to temporarily modify their cryptographic subsystem to behave in a
similar manner as the libsample_libcrypto.so and replay the pre-com-
puted messages stored in sample_messages.h. The responses from their
own remote attestation service provider should match the ones generated by
ours, which are also stored in sample_messages.h.

NOTE
Do not use the sample cryptographic library provided in this sample in pro-
duction code.

Using a Different Extended Intel® EPID Group for Remote Attestation

The Intel® SGX platform software can generate Quotes signed by keys belong-
ing to a more than one extended Intel® EPID Group. Before remote attestation
starts, the ISV Service provider (SP) needs to know which extended Intel®
EPID Group the PSW supports. The ISV SP will use this information to request
Quote generation and verification in the correct extended Intel® EPID Group.
The API sgx_get_extended_epid_group_id returns the extended Intel®
EPID Group ID. The ISV application should query the currently configured
extended Intel® EPID Group ID from the platform software using this API and
sending it to the ISV SP. The ISV SP then knows which extended Intel® EPID
Group to use for remote attestation. If the ISV SP does not support the

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 117 -

provided extended Intel® EPID Group, it will terminate the remote attestation
attempt.

ECDSA Remote Attestation

The Intel® SGX platform software consume The Intel® SGX Data Center Attest-
ation Primitives (Intel® SGX DCAP) in order to support ECDSA attestation. The
platform which creates the ECDSA attestation must support Flexible Launch
Control (FLC).

The ECDSA Attestation key is created and owned by the owner of the remote
attestation infrastructure but is certified by an Intel rooted key whose cer-
tificate is distributed by Intel. The Intel rooted certificate proves that the plat-
form running the Intel® SGX enclave is valid and in good standing.

The application calls sgx_select_att_key_id to select the ECDSA attest-
ation key from a list provided by the off-platform Quote verifier.

Switchless
The Switchless sample is designed to illustrate the usage and potential per-
formance benefits of the Intel® Software Guard Extensions (Intel® SGX) Switch-
less Calls. It demonstrates the usage of sgx_create_enclave_ex and the
Switchless Calls configuration. The Switchless sample EDL defines regular and
switchless ECALLs and regular and switchless OCALLs. The sample application
calls sample ECALLSs/OCALLs in loops and compares the execution time of
the regular and switchless calls.

Protected Code Loader
Comparing the sample code in folder SampleEnclavePCL to the sample code
in folder SampleEnclave demonstrates how to integrate the Intel® Software
Guard Extensions Protected Code Loader (Intel® SGX PCL) into an ISV existing
Intel® SGX project.

Sample Enclave for GM SMx using Intel® IPP
The project SampleEnclaveGMIPP shows you how to use the GM (Chinese
National Commercial Password Algorithms) SM2, SM3, and SM4 functions
inside an enclave. These functions are implemented in the Intel® IPP.

The source code is shipped with the installation package of the Intel® SGX
SDK in <install-dir>SampleCode/SampleEnclaveGMIPP.

There are 3 parts of the sample project: initializing an enclave, creating an
ECALL and calling GM SM2, or SM3, or SM4 functions in a specific sequence in

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 118 -

this ECALL, and destroying the enclave. For more details about GM SM2, SM3,
and SM4 functions, refer to the Intel® IPP official page.

GM SM2

SM2 is a public key cryptographic algorithm based on elliptic curves that is
used for key pair generation and digital signature verification. The procedure
of using GM SM2 functions for signing and verifying is demonstrated below:

1. Create an ECC context for SM2
2. Create an SM2 key pair including a private key and a public key
3. Do user message digest for SM2 signing and verifying

4. Sign the user message using SM2 ECC context by a private key.
5. Verify the signature of the user message using SM2 ECC context by a

public key
6. Remove secrets and release resources

GM SM3

SM3 is a cryptographic hash function used in digital signatures, message
authentication codes, and pseudorandom number generators. The procedure
of using GM SM3 functions to compute a digest of a message:

1. Initialize: initialize SM3 context
2. Update: digest the message of specified length
3. Get tag: compute the current SM3 digest value of the processed part of

the message
4. Finalize: complete computation of the SM3 digest value
5. Remove secrets and release resources

GM SM4

SM4 is a block cipher algorithm used for data encryption and decryption. The
procedure of using GM SM4 functions to encrypt plaintext and decrypt cipher-
text by CBC (Cipher Block Chaining) mode and CTR (Counter) mode:

1. Initialize a SM4 context
2. Encrypt a plaintext to an encrypted text by CBC/CTR
3. Decrypt the encrypted text to a decrypted text by CBC/CTR
4. Compare plaintext and decrypted text
5. Remove secrets and release resources

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 119 -

Sample Attested TLS
The project SampleAttestedTLS shows you how to establish attested TLS chan-
nel based on Intel® SGX ECDSA remote attestation. Refer to
AttestedTLSREADME and README in Sample project to understand the
basic concept of Attested TLS channel and prerequisites.

This sample demonstrates attested TLS in two different ways:

l between two enclaves

l between an enclave application and a non enclave application

NOTE:
The sample based on Intel® SGX ECDSA remote attestation. Refer to Intel®
SGX DCAP (Data Center Attestation Primitives) to set up environment and
make sure DCAP QuotGenerationSample and QuoteVeri-
ficationSample can be ran successfully.

https://github.com/intel/SGXDataCenterAttestationPrimitives.git

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 120 -

Library Functions and Type Reference
This topic includes the following sub-topics to describe library functions and
type reference for Intel® Software Guard Extensions SDK:

l Untrusted Library Functions

l Trusted Libraries

l Function Descriptions

l Types and Enumerations

l Error Codes

Untrusted Library Functions
The untrusted library functions can only be called from application code - out-
side the enclave.

The untrusted libraries built for the hardware mode contain a string with the
release number. The string version, which uses the library name as the prefix,
is defined when the library is built. The string version consists of various para-
meters such as the product number, SVN revision number, build number, and
so on. This mechanism ensures all untrusted libraries shipped in a given
Intel® SGX PSW/SDK release have the same version number and allows quick
identification of the untrusted libraries linked into an untrusted component.

For instance, libsgx_urts.so contains a string version SGX_URTS_
VERSION_1.0.0.0. The last digit varies depending on the specific Intel SGX
PSW/SDK release number.

Enclave Creation and Destruction
These functions are used to create or destroy enclaves:

l sgx_create_enclave

l sgx_create_enclave_ex

l sgx_create_enclave_from_buffer_ex

l sgx_create_encrypted_enclave

l sgx_destroy_enclave

Quoting Functions
These functions allow application enclaves to ensure that they are running on
the Intel® Software Guard Extensions environment.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 121 -

NOTE:
To run these functions in the hardware mode, you need to access to the Inter-
net. Configure the system network proxy settings if needed.

These functions perform Intel® EPID quoting.

l sgx_init_quote

l sgx_calc_quote_size

l sgx_get_quote_size

l sgx_get_quote

l sgx_report_attestation_status

l sgx_check_update_status

These functions perform Intel® EPID quoting and ECDSA quoting.

l sgx_select_att_key_id

l sgx_init_quote_ex

l sgx_get_quote_size_ex

l sgx_get_quote_ex

l sgx_get_supported_att_key_id_num

l sgx_get_supported_att_key_ids

Untrusted Key Exchange Functions
These functions allow exchanging of secrets between ISV’s server and
enclaves. They are used in concert with the trusted Key Exchange functions.

NOTE:
To run these functions in the hardware mode, you need to access to the Inter-
net. Configure the system network proxy settings if needed.

These functions perform Intel® EPID attestation.

l sgx_ra_get_msg1

l sgx_ra_proc_msg2

l sgx_get_extended_epid_group_id

These functions perform Intel® EPID attestation.and ECDSA attestation.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 122 -

l sgx_ra_get_msg1_ex

l sgx_ra_proc_msg2_ex

Untrusted Remote Attestation TLS library

This library provides two APIs that help users to verify the self-signed X.509
certificate and SGX quote in non-SGX enclave environment. It also provides
support for Trusted Remote Attestation TLS library.

Note that the verification is not performed inside an SGX enclave. The APIs lis-
ted below call Intel® SGX QVL (Quote Verification Library) to verify quote, and
QvE (Quote Verification Enclave) is not involved. Before using these APIs, make
sure the verification environment is secure.

l tee_verify_certificate_with_evidence_host

l tee_free_supplemental_data_host

Intel® SGX Enabling and Launch Control Functions
The enabling and launch control function helps you to enable the Intel® Soft-
ware Guard Extensions (Intel® SGX) device and return appropriate status.

l sgx_cap_enable_device

This function provides an Enclave Signing Key Allow List Certificate Chain,
which contains the signing key(s) of the Intel® SGX application enclave(s)
allowed to be launched. If the system has not acquired an up-to-date Enclave
Signing Key Allow List Certificate Chain, you can provide the chain to the sys-
tem by setting sgx_register_wl_cert_chain. Use sgx_get_whitel-
ist_size to get the size of the current Enclave Signing Key Allow List
Certificate Chain. Use sgx_get_whitelist to get the chain.

l sgx_register_wl_cert_chain

l sgx_get_whitelist_size

l sgx_get_whitelist

Intel® SGX device capability Functions

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 123 -

The Intel® SGX device capability functions help you query the Intel
SGX device status and the version of the PSW installed.

l sgx_is_capable

l sgx_cap_get_status

Trusted Libraries
The trusted libraries are static libraries that linked with the enclave binary.
The Intel® Software Guard Extensions SDK ships with several trusted libraries
that cover domains such as standard C/C++ libraries, synchronization, encryp-
tion and more.

These functions/objects can only be used from within the enclave.

Trusted libraries built for HW mode (for example, not for simulation) contain a
string with the release number. The string version, which uses the library name
as prefix, is defined when the SDK is built and consists of various parameters
such as the product number, SVN revision number, build number, and so on.
This mechanism ensures all trusted libraries shipped in a given SDK release
will have the same version number and allows quick identification of the trus-
ted libraries linked into an enclave.

For instance, libsgx_tstdc.a contains a string version like SGX_TSTDC_
VERSION_1.0.0.0. Of course, the last digits vary depending on the SDK
release.

CAUTION:
Do not link the enclave with any untrusted library including C/C++ standard lib-
raries. This action will either fail the enclave signing process or cause a runtime
failure due to the use of restricted instructions.

Trusted Runtime System
The Intel® SGX trusted runtime system (tRTS) is a key component of the Intel®
Software Guard Extensions SDK. It provides the enclave entry point logic as
well as other functions to be used by enclave developers.

l Intel® Software Guard Extensions Helper Functions

l Custom Exception Handling

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 124 -

Intel® Software Guard Extensions Helper Functions

The tRTS provides the following helper functions for you to determine
whether a given address is within or outside enclave memory.

l sgx_is_within_enclave

l sgx_is_outside_enclave

The tRTS provides a wrapper to the RDRAND instruction to generate a true
random number from hardware. The C/C++ standard library functions rand
and srand functions are not supported within an enclave because they only
provide pseudo random numbers. Instead, enclave developers should use the
sgx_read_rand function to get true random numbers.

l sgx_read_rand

The tRTS also provides two functions to read or write the PKRU register if the
enclave is configured as Protection Keys enabled:

l sgx_rdpkru

l sgx_wrpkru

Custom Exception Handling

The Intel® Software Guard Extensions SDK provides an API to allow you to
register functions, or exception handlers, to handle a limited set of hardware
exceptions. When one of the enclave supported hardware exceptions occurs
within the enclave, the registered exception handlers will be called in a spe-
cific order until an exception handler reports that it has handled the excep-
tion. For example, issuing a CPUID instruction inside an Enclave will result in a
#UD fault (Invalid Opcode Exception). ISV enclave code can call sgx_
register_exception_handler to register a function of type sgx_excep-
tion_handler_t to respond to this exception. To check a list of enclave sup-
ported exceptions, see Intel® Software Guard Extensions Programming
Reference.

NOTE:
Custom exception handling is only supported in HW mode. Although the
exception handlers can be registered in simulation mode, the exceptions can-
not be caught and handled within the enclave.

NOTE:
OCALLs are not allowed in the exception handler.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 125 -

NOTE:
Custom exception handing only saves general purpose registers in sgx_
exception_info_t. You should be careful when touching other registers in
the exception handlers.

Note:

If the exception handlers can not handle the exceptions, abort() is called.
abort() makes the enclave unusable and generates another exception.

The Custom Exception Handling APIs are listed below:

l sgx_register_exception_handler

l sgx_unregister_exception_handler

Custom Exception Handler for CPUID Instruction

If an ISV requiresusing the CPUID information within an enclave, then the
enclave code must make an OCALL to perform the CPUID instruction in the
untrusted application. The Intel® SGX SDK provides two functions in the lib-
rary sgx_tstdc to obtain CPUID information through an OCALL:

l sgx_cpuid

l sgx_cpuid_ex

In addition, the Intel SGX SDK also provides the following intrinsics which call
the above functions to obtain CPUID data:

l __cpuid

l __cpuidex

Both the functions and intrinsics result in an OCALL to the uRTS library to
obtain CPUID data. The results are returned from an untrusted component in
the system. It is recommended that threat evaluation be performed to ensure
that CPUID return values are not problematic. Ideally, sanity checking of the
return values should be performed.

If an ISV's enclave uses a third party library which executes the CPUID instruc-
tion, then the ISV would need to provide a custom exception handler to
handle the exception generated from issuing the CPUID instruction (unless the
third party library registers its own exception handler for CPUID support). The
ISV is responsible for analyzing the usage of the specific CPUID result
provided by the untrusted domain to ensure it does not compromise the

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 126 -

enclave security properties. Recommended implementation of the CPUID
exception handler involves:

1. ISV analyzes the third party library CPUID usages, identifying required
CPUID results.

2. ISV enclave code initialization routine populates a cache of the required
CPUID results inside the enclave. This cache might be maintained by the
RTS or by ISV code.

3. ISV enclave code initialization routine registers a custom exception hand-
ler.

4. The custom exception handler, when invoked, examines the exception
information and faulting instruction. If the exception is caused by a
CPUID instruction:

1. Retrieve the cached CPUID result and populate the CPUID instruc-
tion output registers.

2. Advance the RIP to bypass the CPUID instruction and complete the
exception handling.

Trusted Service Library
The Intel® Software Guard Extensions SDK provides a trusted library named
sgx_tservice for secure data manipulation and protection. The sgx_tser-
vice library provides the following trusted functionality and services:

l Intel® Software Guard Extensions Instruction Wrapper Functions

l Intel® Software Guard Extensions Sealing and Unsealing Functions

l Diffie–Hellman (DH) Session Establishment Functions

l Custom Alignment Interfaces

Intel® Software Guard Extensions Instruction Wrapper Functions

The sgx_tservice library provides functions for getting specific keys and
creating and verifying an enclave report. The API functions are listed below:

l sgx_get_key

l sgx_create_report

l sgx_verify_report

The sgx_tservice library also provides two help functions:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 127 -

l sgx_self_report for getting a self cryptographic report

l sgx_self_target for getting a self target info of an enclave.

Intel® Software Guard Extensions Sealing and Unsealing Functions

The sgx_tservice library provides the following functions:

l Exposes APIs to create sealed data which is both confidentiality and
integrity protected.

l Exposes an API to unseal sealed data inside the enclave.

l Provides APIs to authenticate and verify the input data with AES-GMAC.

See the following related topics for more information.

l sgx_seal_data

l sgx_seal_data_ex

l sgx_unseal_data

l sgx_mac_aadata

l sgx_mac_aadata_ex

l sgx_unmac_aadata

The library also provides APIs to help calculate the sealed data size, encrypt
text length, and Message Authentication Code (MAC) text length.

l sgx_calc_sealed_data_size

l sgx_get_add_mac_txt_len

l sgx_get_encrypt_txt_len

SealLibrary Introduction

When an enclave is instantiated, it provides protections (confidentiality and
integrity) to the data by keeping it within the boundary of the enclave. Enclave
developers should identify enclave data and/or state that is considered secret
and potentially needs preservation across the following enclave destruction
events:

l Application is done with the enclave and closes it.

l Application itself is closed.

l The platform is hibernated or shutdown.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 128 -

In general, the secrets provisioned within an enclave are lost when the enclave
is closed. However if the secret data needs to be preserved during one of
these events for future use within an enclave, it must be stored outside the
enclave boundary before closing the enclave. In order to protect and preserve
the data, a mechanism is in place which allows enclave software to retrieve a
key unique to that enclave. This key can only be generated by that enclave on
that particular platform. Enclave software uses that key to encrypt data to the
platform or to decrypt data already on the platform. Refer to these encrypt
and decrypt operations as sealing and unsealing respectively as the data is
cryptographically sealed to the enclave and platform.

To provide strong protection against potential key-wear-out attacks, a unique
seal key is generated for each data blob encrypted with the sgx_seal_data
API call. A key ID for each encrypted data blob is stored in clear alongside the
encrypted data blob. The key ID is used to re-generate the seal key to decrypt
the data blob.

AES-GCM (AES – Advanced Encryption Standard) is utilized to encrypt and
MAC-protect the payload. To protect against software-based side channel
attacks, the crypto implementation of AES-GCM utilizes Intel® Advanced
Encryption Standard New Instructions (Intel® AES-NI), which is immune to soft-
ware-based side channel attacks. The Galois/Counter Mode (GCM) is a mode of
operation of the AES algorithm. GCM assures authenticity of the confidential
data (of up to about 64 GB per invocation) using a universal hash function.
GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM can also
provide authentication assurance for additional data (of practically unlimited
length per invocation) that is not encrypted. If the GCM input contains only
data that is not to be encrypted, the resulting specialization of GCM, called
GMAC (Galois Message Authentication Code), is simply an authentication mode
for the input data. The sgx_mac_aadata API call restricts the input to non-
confidential data to provide data origin authentication only. The single output
of this function is the authentication tag.

Example Use Cases

One example is that an application may start collecting secret state while
executing that needs to be preserved and utilized on future invocations of
that application. Another example is during application installation, a secret
key may need to be preserved and verified upon starting the application.

For these cases the seal APIs can be utilized to seal the secret data (key or
state) in the examples above, and then unseal the secret data when needed.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 129 -

Sealing

1. Use sgx_calc_sealed_data_size to calculate the number of bytes
to allocate for the sgx_sealed_data_t structure.

2. Allocate memory for the sgx_sealed_data_t structure.
3. Call sgx_seal_data to perform sealing operation
4. Save the sealed data structure for future use.

Unsealing

1. Use sgx_get_encrypt_txt_len and sgx_get_add_mac_txt_
len to determine the size of the buffers to allocate in terms of bytes.

2. Allocate memory for the decrypted text and additional text buffers.
3. Call sgx_unseal_data to perform the unsealing operation.

Diffie–Hellman (DH) Session Establishment Functions
The sgx_tservice library provides the following functions to allow an ISV to
establish secure session between two enclaves using the EC DH Key exchange
protocol.

l sgx_dh_init_session

l sgx_dh_responder_gen_msg1

l sgx_dh_initiator_proc_msg1

l sgx_dh_responder_proc_msg2

l sgx_dh_initiator_proc_msg3

Custom Alignment Interfaces

The sgx_tservice library provides a set of interfaces that facilitate custom
alignment of secrets and structures that contain secrets. Different interfaces
are used for secrets that are statically-defined (stack, global, static) versus
dynamically-defined (heap) and for secrets in C++ code versus C code.

See the following related topics for more information:

l class template custom_alignment_aligned

l sgx_get_aligned_ptr

l sgx_aligned_malloc

l sgx_aligned_free

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 130 -

C Standard Library
The Intel® Software Guard Extensions SDK includes a trusted version of the C
standard library. The library is named sgx_tstdc (trusted standard C), and
can only be used inside an enclave. Standard C headers are located under
[Intel SGX SDK Install Path]include/tlibc.

sgx_tstdc provides a subset of C99 functions that are ported from the
OpenBSD* project. Unsupported functions are not allowed inside an enclave
for the following reasons:

l The definition implies usage of a restricted CPU instruction.

l The definition is known to be unsafe or insecure.

l The definition implementation is too large to fit inside an enclave or
relies heavily on information from the untrusted domain.

l The definition is compiler specific, and not part of the standard.

l The definition is a part of the standard, but it is not supported by a spe-
cific compiler.

See Unsupported C Standard Functions for a list of unsupported C99 defin-
itions within an enclave.

Locale Functions

A trusted version of locale functions is not provided primarily due to the size
restriction. Those functions rely heavily on the localization data (normally 1MB
to 2MB), which should be preloaded into the enclave in advance to ensure
that it will not be modified from the untrusted domain. This practice would
increase the footprint of an enclave, especially for those enclaves not depend-
ing on the locale functionality. Moreover, since localization data is not avail-
able, wide character functions inquiring enclave locale settings are not
supported either.

Random Number Generation Functions

The random functions srand and rand are not supported in the Intel® SGX
SDK C library. A true random function sgx_read_rand is provided in the
tRTS library by using the RDRAND instruction. However, in the Intel® SGX sim-
ulation environment, this function still generates pseudo random numbers
because RDRAND may not be available on the hardware platform.

String Functions

The functions strcpy and strcat are not supported in the Intel® SGX SDK C
library. You are recommended to use strncpy and strncat instead.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 131 -

Abort Function

The abort() function is supported within an enclave but has a different beha-
vior. When a thread calls the abort function, it makes the enclave unusable by
setting the enclave state to a specific value that allows the tRTS and applic-
ation to detect and report this event. The aborting thread generates an excep-
tion and exits the enclave, while other enclave threads continue running
normally until they exit the enclave. Once the enclave is in the unusable state,
subsequent enclave calls and OCALL returns generate the same error indic-
ating that the enclave is no longer usable. After all thread calls abort, the
enclave is locked and cannot be recovered. You have to destroy, reload and
reinitialize the enclave to use it again.

atexit_Function

The atexit() function is supported inside enclaves but only under specific
circumstances. On platforms that support SGX2, the tRTS invokes the global
destructors as well as function registered with the atexit() function when
enclave is destroyed.

Thread Synchronization Primitives

Multiple untrusted threads may enter an enclave simultaneously as long as
more than one thread context is defined by the application and created by
the untrusted loader. Once multiple threads execute concurrently within an
enclave, they will need some forms of synchronization mechanism if they
intend to operate on any global data structure. In some cases, threads may use
the atomic operations provided by the processor’s ISA. In the general case,
however, they would use synchronization objects and mechanisms similar to
those available outside the enclave.

The Intel® Software Guard Extensions SDK already supports mutex and con-
ditional variable synchronization mechanisms by means of the following API
and data types defined in the Types and Enumerations section. Some func-
tions included in the trusted Thread Synchronization library may make calls
outside the enclave (OCALLs). If you use any of the APIs below, you must first
import the needed OCALL functions from sgx_tstdc.edl. Otherwise, you
will get a linker error when the enclave is being built; see Calling Functions out-
side the Enclave for additional details. The table below illustrates the prim-
itives that the Intel® SGX Thread Synchronization library supports, as well as
the OCALLs that each API function needs.

Function API OCall Function
Mutex Synchronization sgx_thread_

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 132 -

mutex_init
sgx_thread_
mutex_destroy
sgx_thread_
mutex_lock

sgx_thread_wait_untrusted_
event_ocall

sgx_thread_
mutex_trylock
sgx_thread_
mutex_unlock

sgx_thread_set_untrusted_
event_ocall

Reader/Writer Lock Syn-
chronization

sgx_thread_
rwlock_init
sgx_thread_
rwlock_destroy
sgx_thread_
rwlock_rdlock

sgx_thread_wait_untrusted_
event_ocall

sgx_thread_
rwlock_wrlock

sgx_thread_wait_untrusted_
event_ocall

sgx_thread_
rwlock_tryrdlock
sgx_thread_
rwlock_trywrlock
sgx_thread_
rwlock_unlock

sgx_thread_set_untrusted_
event_ocall
sgx_thread_set_multiple_untrus-
ted_events_ocall

Condition Variable Syn-
chronization

sgx_thread_cond_
init
sgx_thread_cond_
destroy
sgx_thread_cond_
wait

sgx_thread_wait_untrusted_
event_ocall

sgx_thread_setwait_untrusted_
events_ocall

sgx_thread_cond_
signal

sgx_thread_set_untrusted_
event_ocall

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 133 -

sgx_thread_cond_
broadcast

sgx_thread_set_multiple_untrus-
ted_events_ocall

Thread Management sgx_thread_self
sgx_thread_equal

NOTE:
Use POSIX aligned pthread functions when you need to synchronize threads
execution.

Query CPUID inside Enclave

The Intel® Software Guard Extensions SDK provides two functions for enclave
developers to query a subset of CPUID information inside the enclave:

l sgx_cpuid

l sgx_cpuidex

Secure Functions

The Intel® Software Guard Extensions SDK provides some secure functions. An
enclave project can include <mbusafecrt.h> to use them.

See Supported C Secure Functions for a list of supported secure functions
definitions within an enclave.

GCC* Built-in Functions

GCC* provides built-in functions with optimization purposes. When GCC recog-
nizes a built-in function, it will generate the code more efficiently by lever-
aging its optimization algorithms. GCC always treats functions with __
builtin_ prefix as built-in functions, such as __bultin_malloc, __
builtin_strncpy, and so on. In many cases, GCC tries to use the built-in
variant for standard C functions, such as memcpy, strncpy, and abort. A call
to the C library function is generated unless the -fno-builtin compiler
option is specified.

GCC optimizes built-in functions in certain cases. If GCC does not expand the
built-in function directly, it will call the corresponding library function (without
the __builtin_ prefix). The trusted C library must supply a version of the
functions to ensure the enclave is always built correctly.

The trusted C library does not contain any function considered insecure (for
example, strcpy) or that may contain illegal instructions in Intel SGX (for

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 134 -

example, fprintf). However, the ISV should be aware that GCC may intro-
duce security risks into an enclave if the compiler inlines the code cor-
responding to an insecure built-in function. In this case, the ISV may use the -
fno-builtin or -fno-builtin-function options to suppress any
unwanted built-in code generation.

See Unsupported GCC* Built-in Functions within an enclave for a list of unsup-
ported GCC built-ins.

Non-Local Jumps

The C standard library provides a pair of functions, setjmp and longjmp,
that can be used to perform non-local jumps. setjmp saves the current pro-
gram state into a data structure. longjmp can later use this data structure to
restore the execution context. This means that after longjmp, execution con-
tinues at the setjmp call site.

Since setjmp/longjmp may transfer execution from one function to a pre-
determined location in another function, normal stack unwinding does not
occur. As a result, you must use this functionality carefully, ensuring that an
enclave only calls setjmp in a valid context. You should also perform extens-
ive security validation to ascertain that the enclave never uses these functions
in such a way it could result in undefined behavior. Typical use of
setjmp/longjmp is the implementation of an exception mechanism (error
handling). However, you must never use these functions in C++ programs. You
should use the standard CEH instead. You are recommended to review the
information provided at cert.org on how to use setjmp/longjmp securely.

Reserved Memory Functions

Intel(R) SGX SDK allows users to configure a reserved memory area for special
usage, such as JIT support. The memory is allowed to be configured or
changed to executable. See Enclave Configuration File for details. To manage
the reserved memory the sgx_tstdc library provides the following functions
to query the memory information, allocate and deallocate the memory, change
the memory protection.

l sgx_get_rsrv_mem_info

l sgx_alloc_rsrv_mem

l sgx_alloc_rsrv_mem_ex

l sgx_free_rsrv_mem

l sgx_tprotect_rsrv_mem

https://www.securecoding.cert.org/confluence/display/c/MSC22-C.+Use+the+setjmp(),+longjmp()+facility+securely

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 135 -

C++ Language Support
The Intel® Software Guard Extensions SDK provides a trusted library for C++
support inside the enclave. C++ developers would utilize advanced C++ fea-
tures that require C++ runtime libraries.

The ISO/IEC 14882: C++ standard is chosen as the baseline for the Intel® Soft-
ware Guard Extensions SDK trusted library. Most of standard C++ features are
fully supported inside the enclave, and including:

1. Dynamic memory management with new/delete;
2. Global initializers are supported (usually used in the construction of

global objects);
3. Run-time Type Identification (RTTI);
4. C++ exception handling inside the enclave.

Currently, global destructors are not supported due to the reason that EPC
memory will be recycled when destroying an enclave.

NOTE
C++ objects are not supported in enclave interface definitions. If an applic-
ation needs to pass a C++ object across the enclave boundary, you are recom-
mended to store the C++ object’s data in a C struct and marshal the data
across the enclave interface. Then you need to instantiate the C++ object
inside the enclave with the marshaled C struct passed in to the constructor (or
you may update existing instantiated objects with appropriate operators).

C++ Standard Library

The Intel® Software Guard Extensions SDK includes a trusted version of the
C++ standard library (including STL) that conforms to the C++14 standard.
However, a different version of this library will be linked depending on the
Makefile you use to develop enclaves. The newer Makefile version uses sgx_
tcxx.a by default, which has been ported from libc++ and supports most
C++14 features. On the other hand, previous Makefile versions use sgx_
tstdcxx.a. This library was ported from STLport but provides limited
C++11 support. If you update an enclave project and want access to all the
supported C++14 features, you need to manually add the new C++ trusted lib-
rary. If sgx_tstdcxx.a is present, replace it with sgx_tcxx.a. Otherwise,
simply add sgx_tcxx.a to the linker dependency list of the Makefile.

As for the C++ standard library, most functions will work just as its untrusted
counterpart, but here is a high level summary of features that are not sup-
ported inside the enclave:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 136 -

1. Functions depending on a locale library;
2. Any other functions that require system calls.

However, only C functions can be used as the language for trusted and untrus-
ted interfaces. While you can use C++ to develop your enclaves, you should
not pass C++ objects across the enclave boundary.

Cryptography Library
The Intel® Software Guard Extensions Software Development Kit (Intel®
SGX SDK) includes a trusted cryptography library named sgx_tcrypto. It
contains cryptographic functions used by other trusted libraries included in
the SDK, such as the sgx_tservice library. Thus, functionality of this library
is limited.

l sgx_sha256_msg

l sgx_sha256_init

l sgx_sha256_update

l sgx_sha256_get_hash

l sgx_sha256_close

l sgx_rijndael128GCM_encrypt

l sgx_rijndael128GCM_decrypt

l sgx_aes_gcm128_enc_init

l sgx_aes_gcm128_enc_update

l sgx_aes_gcm128_enc_get_mac

l sgx_aes_gcm_close

l sgx_rijndael128_cmac_msg

l sgx_cmac128_init

l sgx_cmac128_update

l sgx_cmac128_final

l sgx_cmac128_close

l sgx_aes_ctr_encrypt

l sgx_aes_ctr_decrypt

l sgx_ecc256_open_context

l sgx_ecc256_close_context

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 137 -

l sgx_ecc256_create_key_pair

l sgx_ecc256_compute_shared_dhkey

l sgx_ecc256_check_point

l sgx_ecdsa_sign

l sgx_ecdsa_verify

l sgx_ecdsa_verify_hash

l sgx_rsa3072_sign

l sgx_rsa3072_sign_ex

l sgx_rsa3072_verify

l sgx_create_rsa_key_pair

l sgx_create_rsa_priv1_key

l sgx_create_rsa_priv2_key

l sgx_create_rsa_pub1_key

l sgx_free_rsa_key

l sgx_rsa_priv_decrypt_sha256

l sgx_rsa_pub_encrypt_sha256

l sgx_calculate_ecdsa_priv_key

l sgx_ecc256_calculate_pub_from_priv

l sgx_hmac_sha256_msg

l sgx_hmac256_init

l sgx_hmac256_update

l sgx_hmac256_final

l sgx_hmac256_close

l sgx_sha384_msg

l sgx_sha384_init

l sgx_sha384_update

l sgx_sha384_get_hash

l sgx_sha384_close

The trusted cryptography library is based on an underlying general-purpose
cryptographic library: Intel® Integrated Performance Primitives (Intel® IPP)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 138 -

Cryptography library or Intel® Software Guard Extensions SSL cryptographic
library (Intel® SGX SSL).

The default build uses precompiled, optimized libraries, which include Intel®
IPP libraries. In addition, the Intel® IPP Cryptographic header files are located
in [Intel SGX SDK Install Path]include/ipp. If you want to use
Intel® SGX SSL instead of Intel® IPP you should use the non-optimized code
implementation. Follow the README.md for detailed instructions.

If you need additional cryptographic functionality, you can use the general-pur-
pose cryptographic library, and its corresponding header files. The underlying
trusted libraries are linked into libsgx_tcrypto.a.

Directly accessing Intel® SGX SSL API is possible after updating the Enclave
EDL and the Application project with the requirements described in Intel®
SGX SSL Developer Guide, section 2.2. Using Intel® SGX SSL Library.

NOTE
To get internal OpenSSL* error codes, you need to build sgx_tcrypto in
DEBUG mode and declare extern unsigned long openssl_last_err,
which holds OpenSSL error code upon failure.

See more information at the Intel® Software Guard Extensions SSL cryp-
tographic library GitHub* repository.

Known limitations:

l Intel SGX SSL library registers a CPUID exception handler which handles
CPUID exceptions on certain leaves:

l o leaf 0x0
o leaf 0x1
o leaf 0x4, sub leaf 0x0
o leaf 0x7, sub leaf 0x0

l Enclaves using one of the mentioned leaves may have a different beha-
vior upon moving from Intel IPP to Intel SGX SSL.

l When running sgx-gdb on an enclave built with Intel SGX SSL, several
SIGILL signals might be raised (since OpenSSL code has some cpuid
instruction calls), gdb continue will continue executing your program.

https://github.com/intel/intel-sgx-ssl/blob/master/Linux/package/docs/Intel(R) Software Guard Extensions SSL Library Linux Developer Guide.pdf
https://github.com/01org/intel-sgx-ssl

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 139 -

Trusted Key Exchange Functions
These functions allow an ISV to exchange secrets between its server and its
enclaves. They are used in concert with untrusted Key Exchange functions.

l sgx_ra_init

l sgx_ra_init_ex

l sgx_ra_get_keys

l sgx_ra_close

Trusted Remote Attestation TLS library
These functions allow end user to create attested TLS channel that are based
on Intel® SGX ECDSA remote attestation. You can call these APIs to generate a
self-signed X.509 certificate with embedded SGX quote, verify the self-signed
X.509 certificate and SGX quote.

Note that this library depends on Intel®SGX ECDSA remote attestation. Before
using these APIs, make sure your system can run Intel® SGX DCAP.

l tee_get_certificate_with_evidence

l tee_free_certificate

l tee_verify_certificate_with_evidence

l tee_free_supplemental_data

Intel® Protected File System Library
Intel® Protected File System Library provides protected files API for Intel®
SGX enclaves. It supports a basic subset of the regular C file API and enables
you to create files and work with them as you would normally do from a reg-
ular application.

With this API, the files are encrypted and saved on the untrusted disk during a
write operation, and they are verified for confidentiality and integrity during a
read operation.

To encrypt a file, you should provide a file encryption key. This key is a 128
bits key, and is used as a key derivation key, to generate multiple encryption
keys. According to “NIST Special Publication 800-108 - Recommendation for
Key Derivation Using Pseudorandom Functions”: “The key that is input to a key
derivation function is called a key derivation key. To comply with this Recom-
mendation, a key derivation key shall be a cryptographic key (see Section 3.1).

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 140 -

The key derivation key used as an input to one of the key derivation functions
specified in this Recommendation can be generated by an approved cryp-
tographic random bit generator (e.g., by a deterministic random bit generator
of the type specified in [5]), or by an approved automated key-establishment
process (e.g., as defined in [1] and [2])”. For more details, please refer to NIST
SP 800-108 document.

Another option is to use automatic keys derived from the enclave sealing key
(see disadvantages of this approach in the topic Using the Protected FS Auto-
matic Keys API).

l sgx_fopen

l sgx_fopen_auto_key

l sgx_fclose

l sgx_fread

l sgx_fwrite

l sgx_fflush

l sgx_ftell

l sgx_fseek

l sgx_feof

l sgx_ferror

l sgx_clearerr

l sgx_remove

l sgx_fexport_auto_key

l sgx_fimport_auto_key

l sgx_fclear_cache

Protected FS Usage Limitation

Since the Protected Files have meta-data embedded in them, only one file
handle can be opened for writing at a time, or many file handles for reading.
OS protection mechanism is used for protecting against accidentally opening
more than one ‘write’ file handle. If this protection is bypassed, the file will get
corrupted. An open file handle can be used by many threads inside the same
enclave, the APIs include internal locks for handling this and the operations
will be executed by one.

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 141 -

Protected FS Error Codes

The Protected File System (FS) API tries to preserve the original C file API
errors. A local errno (enclave internal) is also set for APIs that require this
according to the original C file API documentation.

When the Protected FS API is accessing the OS file system, if an error is
returned, that error will be provided back to the caller of the Protected FS
API. In addition, when possible, it returns an EXXX error code for internal
errors (for example, the EACCES error code is returned when trying to write a
file that was opened as read-only, or ENOMEM is returned when an internal
attempt to allocate memory fails). Several special error codes were added, like
SGX_ERROR_FILE_NAME_MISMATCH, for the cases when the current file
name does not match the internal file name. You can find these error codes
and their explanations in sgx_error.h.

Protected FS Application Layout

The following figure demonstrates how the Protected File System (FS) works
inside an Intel® SGX application:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 142 -

Figure 12 Protected File System Layout

To use the Intel SGX Protected File System libraries:

1. The enclave must be linked with libsgx_tprotected_fs.a
2. The application must be linked with libsgx_uprotected_fs.a
3. The enclave’s EDL file must ‘import’ all the functions from sgx_tpro-

tected_fs.edl
4. The source files should ‘include’ sgx_tprotected_fs.h

Protected FS S3/S4 Important Note

To enhance the performance of the Protected File System, cache is used to
save the user’s data inside the enclave, and only when the cache is full it is
flushed to disk.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 143 -

In case of S3/S4 transitions, data in the cache will be lost (the entire enclave is
los). Therefore, all file handles must be flushed or closed before entering
S3/S4. If no action is taken, the file integrity is not harmed, only the latest writ-
ten data that was not flushed will be lost.

Using the Protected FS Automatic Keys API

Automatic keys are derived from the enclave sealing key (with MRSIGNER), so
the files are bound to all the enclaves signed by the same signer on this par-
ticular machine. To transfer a file from one machine to another, you should fol-
low the key export and import procedure below. There are several cases when
using automatic keys is not recommended.

l Disaster recovery – trying to open files created on one machine on a dif-
ferent machine will fail (unless you follow the procedure described
below). Therefore, automatic disaster recovery may not work properly.

l VM migrations – currently, Intel® SGX does not support automatic
enclave keys transfer in VM migration. Therefore, enclaves running on
servers that use VM migrations cannot use the auto key API.

File Transfer with the Automatic Keys API

For files that were created with sgx_fopen_auto_key, to transfer a file
from one enclave to another, or to another enclave on a different machine, fol-
low this procedure:

1. Close all open handles to the file.
2. Call the sgx_fexport_auto_key API. This API returns the last encryp-

tion key that was used to encrypt the meta-data node of the file.
3. Transfer the file to the destination enclave, and provide the key in a safe

method to that enclave.
4. Call the sgx_fimport_auto_key API. This API will re-encrypt the

meta-data node with a new encryption key, derived from the local
enclave seal key.

5. Open the file with sgx_fopen_auto_key as usual.

Protected FS Security Non-Objectives

In order to mitigate file swapping attacks (with two valid files), file names are
checked during a file open operation (verifies that the current name is equal
to the file name the file was created with). However, if two files are created
with the same file name, there is no way to protect against such a swapping
attack.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 144 -

Since the files are saved in the regular FS, there is no protection against mali-
cious file deletion or modification – this will only be detected when trying to
read or write the modified section from the file (decryption will fail).

There are several things that are not protected when using the Protected FS
API, and anyone who can access the OS can see them:

1. File name
2. File size (up to 4KB granularity)
3. File modification date
4. Key type (user or auto)
5. Usage patterns
6. Read/Write offsets

If any of those items might expose sensitive information, and help a potential
attacker, the enclave developer should add defense mechanisms on their own
to protect against this. For example, an implementation of a “secure browser”
should not save the ‘cookies’ with the names of their related websites,
because an attacker can learn from that the user’s browsing history.

TCMalloc Library
The Intel® Software Guard Extensions SDK includes a trusted version of the
TCMalloc library. The library is named sgx_tcmalloc, and can only be used
inside an enclave. sgx_tcmalloc provides high performance memory alloc-
ation and deallocation functions that are ported from gperftools-2.5:

l malloc

l free

l realloc

l calloc

l memalign

Do the following to enable TCMalloc in Intel® SGX:

1.Set the enclave HeapMaxSize equal or larger than 0x900000 in
Enclave.config.xml.

For example:

<HeapMaxSize>0x900000</HeapMaxSize>

2.Add "-Wl,--whole-archive -lsgx_tcmalloc -Wl,--no-whole-
archive" into enclave linking options in the Makefile.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 145 -

For example:

Enclave_Link_Flags := $(SGX_COMMON_CFLAGS) -Wl,--no-
undefined -nostdlib -nodefaultlibs -nostartfiles -
L$(SGX_LIBRARY_PATH) \

-Wl,--whole-archive -l$(Trts_Library_Name) -Wl,--no-
whole-archive \

-Wl,--whole-archive -lsgx_tcmalloc -Wl,--no-whole-
archive \

-Wl,--start-group -lsgx_tstdc -lsgx_tstdcxx -l$(Crypto_
Library_Name) -l$(Service_Library_Name) -Wl,--end-group
\

-Wl,-Bstatic -Wl,-Bsymbolic -Wl,--no-undefined \

-Wl,-pie,-eenclave_entry -Wl,--export-dynamic \

-Wl,--defsym,__ImageBase=0 \

-Wl,--version-script=Enclave/Enclave.lds

NOTE:
The flags "-Wl,--whole-archive -lsgx_tcmalloc -Wl,--no-
whole-archive" must be inserted before "-Wl,--start-group -
lsgx_tstdc -lsgx_tstdcxx -Wl,--end-group".

Otherwise, the enclave build will fail.

Switchless Calls Library
The untrusted portion of the Switchless Calls is integrated into the uRTS lib-
rary. The trusted part is provided by the libsgx_tswitchless.a library.
The trusted library does not expose any API functions. It just enables the
Switchless Calls feature inside the enclave.

Developers can enable Switchless Calls using the ‘transition_using_threads’
keyword in the enclave EDL file and linking it with the libsgx_tswitch-
less.a library.

At runtime, the enclave must be created using the sgx_create_enclave_
ex API, providing a Switchless Calls configuration structure.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 146 -

Protected Code Loader Library
The untrusted portion of Intel® SGX PCL is integrated into the uRTS library.
The trusted part is provided by libsgx_pcl.a and libsgx_pclsim.alib-
raries in HW and Simulation modes respectively. The trusted library does not
expose any API to the ISV portion of the enclave. See 'Integrating
Intel® SGX PCL with an existing Intel® SGX solution' above for a detailed
description of how these libraries are used.

pthreads
The Intel® Software Guard Extensions (Intel® SGX) SDK includes a trusted ver-
sion of the pthreads library. The library is named sgx_pthread, and can only
be used inside an enclave.

With the trust pthreads library, a single Enclave process can contain multiple
threads executing the same program.

These threads share the same global memory inside Enclave(data and heap
segments) but each thread has its own stack and TCS. You need to configure
enough <TCSNum> in Enclave Configuration File; otherwise pthread_cre-
ate() fails.

The list below contains APIs that the Intel® SGX pthread library supports.
These API interfaces are aligned with the POSIX standard.

l pthread_create(pthread_t *threadp, const pthread_
attr_t *attr, void*(*start_routine)(void*),
void*arg)
Description: start a new thread in the calling process.

NOTE
The attr is not supported inside the Enclave, so the new thread will be
created with PTHREAD_CREATE_JOINABLE.

l pthread_exit(void *retval)

Description: terminate the calling thread.

l pthread_join(pthread_t thread, void **retval)

Description: join with a terminated thread.

NOTE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 147 -

This function returns directly when called inside Enclave's destructor pro-
cess on the Intel® SGX 2.0 platform. URTS syncs and recycles running
threads when destroying the Enclave.

l pthread_self(void)

Description: obtain ID of the calling thread.

l pthread_mutex_init(pthread_mutex_t *mutexp, const
pthread_mutexattr_t *attr)
Description: initialize the mutex referenced by mutex.

NOTE
The attr is not supported inside the Enclave.

l pthread_mutex_destroy(pthread_mutex_t *mutexp)

Description: destory the mutex.

l pthread_mutex_lock(pthread_mutex_t *mutexp)

Description: lock the mutex.

l pthread_mutex_trylock(pthread_mutex_t *mutexp)

Description: lock the mutex. If the mutex is currently locked by other
thread, it returns immediately.

l pthread_mutex_unlock(pthread_mutex_t *mutexp)

Description: unlock the mutex.

l pthread_rwlock_init(pthread_rwlock_t *rwlockp, const
pthread_rwlockattr_t *attr)
Description: initialize the read-write lock referenced by rwlockp.

NOTE
The attr is not supported inside the Enclave.

l pthread_rwlock_destroy(pthread_rwlock_t *rwlockp)

Description: destroy the read-write lock object.

l pthread_rwlock_rdlock(pthread_rwlock_t *rwlockp)

Description: acquire a reader lock.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 148 -

l pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlockp)

Description: attempt to acquire a reader lock. If the corresponding writer
lock is currently held by another thread, it returns immediately.

l pthread_rwlock_wrlock(pthread_rwlock_t *rwlockp)

Description: acquire a writer lock.

l pthread_rwlock_trywrlock(pthread_rwlock_t *rwlockp)

Description: attempt to acquire a writer lock. If the corresponding reader
or writer lock is currently held by another thread, it returns immediately.

l pthread_rwlock_unlock(pthread_rwlock_t *rwlockp)

Description: release the reader or writer lock held by the thread.

l pthread_cond_init(pthread_cond_t *condp, const
pthread_condattr_t *attr)
Description: initialize a condition variable.

NOTE
The attr is not supported inside the Enclave.

l pthread_cond_destory(pthread_cond_t *condp)

Description: destory a condition variable.

l pthread_cond_wait(pthread_cond_t *condp, pthread_
mutex_t *mutexp)
Description: wait for a condition.

l pthread_cond_signal(pthread_cond_t *condp)

Description: signal a condition.

l pthread_cond_broadcast(pthread_cond_t *condp)

Description: broadcast a condition.

l pthread_key_create(pthread_key_t *key, void (*de-
structor)(void*))
Description: create a thread-specific data key.

l pthread_key_delete(pthread_key_t key)

Description: delete a thread-specific data key.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 149 -

l pthread_get_specific(pthread_key_t key)

Description: manage thread-specific data.

l pthread_set_specific(pthread_key_t key, const void
*data)
Description: manage thread-specific data.

l pthread_equal(pthread_t t1, pthead_t t2)

Description: compare thread IDs.

l pthread_once(pthread_once_t *once_control, void
(*init_routine)(void*))
Description: dynamic package initialization.

To enable trust pthreads in Intel® SGX, add "-lsgx_pthread" into enclave
linking options in the Makefile.

Intel® SGX OpenMP Library
OpenMP (Open Multi-Processing) API is a portable, scalable model that gives
parallel programmers a simple and flexible interface for developing portable
parallel applications in C/C++ and Fortran. The Intel® Software Guard Exten-
sions Software Development Kit (Intel® SGX SDK) includes a trusted version of
OpenMP library for C/C++, named libsgx_omp.a. The Intel® SGX OpenMP
library is a customized version based on LLVM* OpenMP* API version 5.0.

The official OpenMP contains a set of directives and a set of runtime library
routines. Not all the directives and runtime routines are supported by the
Intel® SGX environment. The Intel® SGX OpenMP library provides a specific
subset of the directives and runtime library routines compared to the official
OpenMP. See Supported OpenMP Directives and Runtime Routines for the
supported list inside enclave. You can also find a list for the features that are
natively unsupported by the Intel® SGX environment at Unsupported OpenMP
Directives and Runtime Routines. Not listed features are not validated and are
not recommended to be used.

NOTE
Intel® SGX OpenMP depends on the Intel® SGX pthreads library for thread
management. As one Intel® SGX thread is designed to bind one TCS, the
TCSNum in the enclave's configuration file should be enough. And it is also
recommended to configure enough heap and stack for the OpenMP enabled

https://github.com/llvm-mirror/openmp

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 150 -

enclaves. Otherwise, Intel® SGX OpenMP may throw exception because of
resource shortage.

To enable Intel® SGX OpenMP library in an enclave, follow the steps below to
update the Makefile and the enclave EDL file:

1. Add '-fopenmp' option to the enclave compiling options in the Make-
file.

2. Add '-lsgx_pthread -lsgx_omp' to the enclave linking options in
the Makefile.

3. Add 'from "sgx_pthread.edl" import *;' to the enclave EDL
file.

Supported OpenMP Directives and Runtime Routines

The Intel® SGX OpenMP supports the following OpenMP directives:

Category Syntax
Parallel construct #pragma omp parallel

Work-sharing constructs #pragma omp for/do

#pragma omp sections

#pragma omp single

#pragma omp master

Data sharing attributes clauses shared, private, default,
firstprivate, lastprivate, reduction

Synchronization clauses critical, atomic, ordered, collapse,
barrier, nowait

initialization clauses firstprivate, lastprivate,
threadprivate,

Data copying clauses copyin, copyprivate

If-control clause if

Others flush, master

Supported runtime routines:

l omp_get_num_threads(void)

l omp_get_dynamic(void)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 151 -

l omp_get_nested (void)

l omp_get_max_threads(void)

l omp_get_thread_num (void)

l omp_get_num_procs (void)

l omp_in_parallel (void)

l omp_in_final (void)

l omp_get_active_level (void)

l omp_get_level (void)

l omp_get_ancestor_thread_num(int)

l omp_get_team_size(int);

l omp_get_thread_limit(void)

l omp_get_max_active_levels(void)

l omp_get_max_task_priority(void)

l omp_get_num_teams(void)

l omp_get_team_num(void)

l omp_init_lock(omp_lock_t *)

l omp_set_lock(omp_lock_t *)

l omp_unset_lock(omp_lock_t *)

l omp_destroy_lock(omp_lock_t *)

l omp_test_lock(omp_lock_t *)

l omp_init_nest_lock(omp_nest_lock_t *)

l omp_set_nest_lock(omp_nest_lock_t *)

l omp_unset_nest_lock(omp_nest_lock_t *)

l omp_destroy_nest_lock(omp_nest_lock_t *)

l omp_test_nest_lock(omp_nest_lock_t *)

l omp_test_nest_lock(omp_nest_lock_t *)

l omp_set_num_threads(int)

l omp_set_dynamic(int)

l omp_set_nested(int)

l omp_set_max_active_levels(int)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 152 -

l omp_set_schedule(omp_sched_t, int)

NOTE
Certain syntax settings and runtime routines behavior may differ from the
standard OpenMP behavior. For example, a thread number. You can use
#pragma omp parallel num_threads(N) or omp_set_num_threads
(N) to configure the working threads number. If the desired value N is too big.
it may not be effective. Intel® SGX OpenMP will take a proper value instead to
avoid the resource shortage exception.

Unsupported OpenMP Directives and Runtime Routines

The Intel® SGX OpenMP does not support the OpenMP directives below:

Category Syntax
Thread Affinity proc_bind

Thread cancellation cancel, cancellation point

Offloading support target, target data, device, map, array …

Unsupported runtime routines:

l omp_get_wtime(void)

l omp_get_wtick(void)

l omp_set_default_device(int)

l omp_is_initial_device(void)

l omp_get_num_devices(void)

l omp_get_initial_device(void)

l omp_target_alloc(size_t, int)

l omp_target_free(void *, int)

l omp_target_is_present(void *, int)

l omp_target_memcpy(void *, void *, size_t, size_t, size_t, int,
int)

l omp_target_memcpy_rect(void *, void *, size_t, int, const size_t
*, const size_t *, const size_t *, const size_t *, const size_t
*, int, int)

l omp_target_associate_ptr(void *, void *, size_t, size_t, int)

l omp_target_disassociate_ptr(void *, int)

l omp_get_device_num(void)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 153 -

l kmp_set_warnings_on(void)

l kmp_set_warnings_off(void)

l kmp_set_affinity(kmp_affinity_mask_t *)

l kmp_get_affinity(kmp_affinity_mask_t *)

l kmp_get_affinity_max_proc(void)

l kmp_create_affinity_mask(kmp_affinity_mask_t *)

l kmp_destroy_affinity_mask(kmp_affinity_mask_t *)

l kmp_set_affinity_mask_proc(int, kmp_affinity_mask_t *)

l kmp_unset_affinity_mask_proc(int, kmp_affinity_mask_t *)

l kmp_get_affinity_mask_proc(int, kmp_affinity_mask_t *)

l omp_get_proc_bind(void)

l omp_get_num_places(void)

l omp_get_place_num_procs(int)

l omp_get_place_proc_ids(int, int *)

l omp_get_place_num(void)

l omp_get_partition_num_places(void)

l omp_get_partition_place_nums(int *)

l omp_control_tool(int, int, void*)

l omp_set_affinity_format(char const *)

l omp_get_affinity_format(char *, size_t)

l omp_display_affinity(char const *)

l omp_capture_affinity(char *, size_t, char const *)

Deep Neural Network Library
The Intel® Software Guard Extensions (Intel® SGX) SDK includes a trusted ver-
sion of the Intel® Deep Neural Network Library (DNNL) library. The library is
named libsgx_dnnl.a, and can only be used inside an enclave.

All the Intel® DNNL standard APIs are supported inside the Intel® SGX DNNL.

Intel® SGX DNNL is ported based on Intel® DNNL V1.1.1. This library is built
with following configurations:

l The library is built as an static library.

l The library is built with CPU engine, the CPU engine is configured to use
OpenMP.

To build the Intel® SGX DNNL library, follow the steps below:

https://github.com/intel/mkl-dnn/releases/tag/v1.1.1

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 154 -

1. Download Intel® SGX source codes.
2. Enter linux-trunk/external/dnnl/
3. Execute make command. The Makefile will download Intel® DNNL V1.1.1

source codes and patch the Intel® SGX specific patch automatically.

To install Intel® SGX DNNL library, follow the steps below:

1. Copy Intel® SGX DNNL lib to the Intel® SGX SDK installation directory.
$cp "./sgx_dnnl/lib/libsgx_dnnl.a" "$(SGX_SDK)
/lib64"

2. Copy Intel® SGX DNNL header file to the Intel® SGX SDK installation dir-
ectory.
$cp "./sgx_dnnl/include/*" "$(SGX_SDK)/include"

To enable Intel® SGX DNNL in Enclave, do the following:

1. On Intel® SGX1 platform, set <ReservedMemExecutable> to 1 in the
Enclave Configuration File.

2. Add "-lsgx_pthread -lsgx_omp -lsgx_dnnl" into enclave link-
ing options in Makefile.

3. Add 'from "sgx_pthread.edl" import *;' to the enclave EDL
file.

Intel® SGX Protobuf Library
Protocol Buffers (a.k.a., protobuf) are Google's language-neutral, platform-neut-
ral, extensible mechanism for serializing structured data. You can find doc-
umentation on protobuf on the Google Developers site. The Intel® Software
Guard Extensions Software Development Kit (Intel® SGX SDK) includes a trus-
ted version of protobuf library for C/C++, named libsgx_protobuf.a. The
Intel® SGX Protobuf library is a customized version based on Google's Protocol
Buffers v3.14.0.

To enable Intel® SGX Protobuf library in an enclave

1. Follow the steps below to update the Makefile:
1. Add '-I$(SGX_SDK)/include/tprotobuf' to the enclave

header files options.
2. Add '-lsgx_protobuf' to the enclave linking options.

2. Define printf in the enclave for the SGX Protobuf logging module.

https://github.com/intel/mkl-dnn/releases/tag/v1.1.1
https://developers.google.com/protocol-buffers/docs/reference/overview
https://github.com/protocolbuffers/protobuf/tree/v3.14.0

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 155 -

Unsupported protobuf Field types, Classes and Functions

Unsupported Field types:

l Duration

l Timestamp

l Service

l Api

l Method

l Empty

l FieldMask

l Value

l Mixin

Unsupported classes:

l GzipInputStream

l GzipOutputStream

l FileInputStream

l FileOutputStream

l IstreamInputStream

l OstreamOutputStream

l TimeUtil

Unsupported Functions:

l SerializeToFileDescriptor(int) const

l ParseFromFileDescriptor (int)

l bool SerializeToOstream(ostream*) const

l bool ParseFromIstream(istream*)

l operator<<(std::ostream&, const uint128&)

l operator<<(std::ostream&, const Status uint128&)

l operator<<(std::ostream&, StringPiece uint128&)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 156 -

Function Descriptions
This topic describes various functions including their syntax, parameters,
return values, and requirements.

NOTE
When an API function lists an EDL in its requirements, users need to explicitly
import such library EDL file in their enclave's EDL.

sgx_create_enclave

Loads the enclave using its file name

Syntax

sgx_status_t sgx_create_enclave(

const char *file_name,
const int debug,
sgx_launch_token_t *launch_token,
int *launch_token_updated,
sgx_enclave_id_t *enclave_id,
sgx_misc_attribute_t *misc_attr

);

Parameters

file_name [in]

Name or full path to the enclave image.

debug [in]

The valid value is 0 or 1.

0 indicates to create the enclave in non-debug mode. An enclave created in
non-debug mode cannot be debugged.

1 indicates to create the enclave in debug mode. The code/data memory
inside an enclave created in debug mode is accessible by the debugger or
other software outside of the enclave and thus is not under the same memory
access protections as an enclave created in non-debug mode.

Enclaves should only be created in debug mode for debug purposes. A helper
macro SGX_DEBUG_FLAG is provided to create an enclave in debug mode. In
release builds, the value of SGX_DEBUG_FLAG is 0. In debug and pre-release
builds, the value of SGX_DEBUG_FLAG is 1 by default.

launch_token [deprecated]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 157 -

Pointer to an sgx_launch_token_t object used to initialize the enclave to be
created (deprecated)

launch_token_updated [deprecated]

This parameter is deprecated.

enclave_id [out]

Pointer to an sgx_enclave_id_t that receives the enclave ID or handle. Must
not be NULL.

misc_attr [out, optional]

Pointer to an sgx_misc_attribute_t structure that receives the misc select and
attributes of the enclave. This pointer may be NULL if the information is not
needed.

Return value

SGX_SUCCESS

The enclave is loaded and initialized successfully.

SGX_ERROR_INVALID_ENCLAVE

The enclave file is corrupted.

SGX_ERROR_INVALID_PARAMETER

The ‘enclave_id’ parameter is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete sgx_create_enclave().

SGX_ERROR_ENCLAVE_FILE_ACCESS

The enclave file cannot be opened. Possible reasons: the enclave file is not
found or you have no privilege to access the enclave file.

SGX_ERROR_INVALID_METADATA

The metadata embedded within the enclave image is corrupted or missing.

SGX_ERROR_INVALID_VERSION

The enclave metadata version (created by the signing tool) and the untrusted
library version (uRTS) do not match.

SGX_ERROR_INVALID_SIGNATURE

The signature for the enclave is not valid.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 158 -

SGX_ERROR_OUT_OF_EPC

The protected memory has run out. Possible reasons: you are creating too
many enclaves, the enclave requires too much memory, or one of the Archi-
tecture Enclaves for this operation cannot be loaded.

SGX_ERROR_NO_DEVICE

The Intel® SGX device is not valid. This may be caused by the Intel® SGX driver
being disabled or not installed.

SGX_ERROR_MEMORY_MAP_CONFLICT

During the enclave creation, a race condition for mapping memory between
the loader and another thread occured. The loader may fail to map virtual
address. Create the enclave again.

SGX_ERROR_DEVICE_BUSY

The Intel® SGX driver or a low level system is busy when creating the enclave.
Create the enclave again.

SGX_ERROR_MODE_INCOMPATIBLE

The target enclave mode is incompatible with the mode of the current RTS.
Possible reasons: a 64-bit application tries to load a 32-bit enclave or a sim-
ulation uRTS tries to load a hardware enclave.

SGX_ERROR_SERVICE_UNAVAILABLE

sgx_create_enclave() needs the AE service to get a launch token. If the
service is not available, the enclave may not be launched.

SGX_ERROR_SERVICE_TIMEOUT

The request to the AE service timed out.

SGX_ERROR_SERVICE_INVALID_PRIVILEGE

The request requires some special attributes for the enclave, but is not priv-
ileged.

SGX_ERROR_NDEBUG_ENCLAVE

The enclave is signed as a product enclave and cannot be created as a debug-
gable enclave.

SGX_ERROR_UNDEFINED_SYMBOL

The enclave contains an undefined symbol.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 159 -

The signing tool should typically report this type of error when the enclave is
built.

SGX_ERROR_INVALID_MISC

The MiscSelct/MiscMask settings are not correct.

SGX_ERROR_PCL_ENCRYPTED

Enclave is encrypted. This function cannot be used to load an enclave that was
encrypted by the encryption tool. Use sgx_create_encrypted_enclave
or sgx_create_enclave_ex.

SGX_ERROR_FEATURE_NOT_SUPPORTED

Requested feature is not supported. Possible features are KSS, EDMM.

SGX_ERROR_MEMORY_MAP_FAILURE

Failed to reserve memory for the enclave.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

The sgx_create_enclave function loads and initializes the enclave using
the enclave file name.

If the enclave is valid, the function returns a value of SGX_SUCCESS. The
enclave ID (handle) is returned via the enclave_id parameter.

The library libsgx_urts.so provides this function to load an enclave with
the Intel® SGX hardware, and it cannot be used to load an enclave linked with
the simulation library. On the other hand, the simulation library libsgx_
urts_sim.so exposes an identical interface which can only load a simulation
enclave. Running in simulation mode does not require Intel® SGX hard-
ware/driver. However, it does not provide hardware protection.

The randomization of the load address of the enclave is dependent on the
operating system. The address of the heap and stack is not randomized and is
at a constant offset from the enclave base address. A compromised loader or
operating system (both of which are outside the TCB) can remove the ran-
domization entirely. The enclave writer should not rely on the randomization
of the base address of the enclave.

Notes on signal handling: If the Linux* kernel you use does not support the
vDSO function to enter the enclave, URTS installs a signal handler for

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 160 -

SIGSEGV, SIGILL, SIGFPE, SIGBUS, SIGTRAP during the first call, after the
enclave is successfully loaded and initialized (EINIT is done) . Its purpose is to
handle signals caused by exceptions inside enclaves or at EENTER, ERESUME
instructions used to enter enclaves. The handler invokes previously installed
signal handlers to handle those signals raised in other situations unrelated to
enclaves. If an application installs signal handler(s) for these signals after sgx_
create_enclave is called, the newly installed handler(s) should also forward
those signals to previously installed handler in order for enclave related excep-
tions to be handled properly by the URTS handler. If the Linux* kernel you use
supports the vDSO function to enter the enclave, the vDSO function inter-
cepts any exceptions that occur when running the enclave.

Requirements

Header sgx_urts.h
Library libsgx_urts.so or libsgx_urts_sim.so (simulation)

sgx_create_enclave_ex

Loads the enclave using its file name.

Enables extended features, Intel® SGX PCL, Switchless Calls initialization, and
Key Separation & Sharing (KSS).

Syntax

sgx_status_t sgx_create_enclave_ex(

const char *file_name,
const int debug,
sgx_launch_token_t *launch_token,
int *launch_token_updated,
sgx_enclave_id_t *enclave_id,
sgx_misc_attribute_t *misc_attr,
const uint32_t ex_features,
const void* ex_features_p[32]

);

Parameters

file_name [in]

Name or full path to the enclave image.

debug [in]

The valid value is 0 or 1.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 161 -

0 indicates creating the enclave in a non-debug mode. An enclave created in a
non-debug mode cannot be debugged.

1 indicates creating the enclave in a debug mode. The codeor data memory
inside an enclave created in a debug mode is accessible by a debugger or
another software outside the enclave. Thus, this enclave is not under the same
memory access protections as a non-debig enclave.

You should create enclaves in the debug mode for debug purposes only. To
create a debuggable enclave, you can use a helper macro SGX_DEBUG_FLAG.
In release builds, the value of SGX_DEBUG_FLAG is 0. In debug and pre-
release builds, the value of SGX_DEBUG_FLAG is 1 by default.

launch_token [deprecated]

Pointer to an sgx_launch_token_t object used to initialize the enclave to be
created (deprecated).

launch_token_updated [deprecated]

This parameter is deprecated.

enclave_id [out]

Pointer to an sgx_enclave_id_t that receives the enclave ID or handle. Must
not be NULL.

misc_attr [out, optional]

Pointer to an sgx_misc_attribute_t structure that receives the misc select and
attributes of the enclave. This pointer can be NULL if the information is not
needed.

ex_features [in]

Bitmask defining the extended features to activate on the enclave creation.

Bit [0] – enable the Intel® SGX PCL.

Bit [1] – enable Switchless Calls.

Bit [2] - enable Key Separation & Sharing (KSS).

Bits [3:31] – reserved, must be 0.

ex_features_p [in]

Array of pointers to extended feature control structures. The index of the
extended feature control structure in the array is the same as the index of the
feature enable bit in ex_features.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 162 -

ex_features_p[0] – pointer to an Intel® SGX PCL sealed key.

ex_features_p[1] – pointer to the sgx_uswitchless_config_t structure.

ex_features_p[2] - pointer to the sgx_kss_config_t structure.

ex_features_p[3:31] – reserved, must be NULL.

Return value

SGX_SUCCESS

Enclave is loaded and initialized successfully.

SGX_ERROR_INVALID_ENCLAVE

Enclave file is corrupted.

SGX_ERROR_INVALID_PARAMETER

‘enclave_id’ parameter is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete sgx_create_enclave_ex().

SGX_ERROR_ENCLAVE_FILE_ACCESS

Enclave file cannot be opened. Possible reasons: the file is not found or you
have no privilege to access the file.

SGX_ERROR_INVALID_METADATA

Metadata embedded within the enclave image is corrupted or missing.

SGX_ERROR_INVALID_VERSION

Enclave metadata version (created by the signing tool) and the untrusted lib-
rary version (uRTS) do not match.

SGX_ERROR_INVALID_SIGNATURE

Signature for the enclave is not valid.

SGX_ERROR_OUT_OF_EPC

Protected memory has run out. Possible reasons: you are creating too many
enclaves, the enclave requires too much memory, or one of the Architecture
Enclaves for this operation cannot be loaded.

SGX_ERROR_NO_DEVICE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 163 -

Intel® SGX device is not valid. Possible reasons: the Intel® SGX driver is dis-
abled or not installed.

SGX_ERROR_MEMORY_MAP_CONFLICT

During enclave creation, a race condition for mapping memory between the
loader and another thread occurred. The loader may fail to map virtual
address. Create the enclave again.

SGX_ERROR_DEVICE_BUSY

Intel®SGX driver or a low level system is busy when creating the enclave.
Create the enclave again.

SGX_ERROR_MODE_INCOMPATIBLE

Target enclave mode is incompatible with the mode of the current RTS.
Reason examples: a 64-bit application tries to load a 32-bit enclave or a sim-
ulation uRTS tries to load a hardware enclave.

SGX_ERROR_SERVICE_UNAVAILABLE

sgx_create_enclave() needs the AE service to get a launch token. If the
service is not available, the enclave may not be launched.

SGX_ERROR_SERVICE_TIMEOUT

Request to the AE service timed out.

SGX_ERROR_SERVICE_INVALID_PRIVILEGE

Request requires some special attributes for the enclave, but it does not priv-
iledge.

SGX_ERROR_NDEBUG_ENCLAVE

Enclave is signed as a product enclave and cannot be created as a debuggable
enclave.

SGX_ERROR_UNDEFINED_SYMBOL

Enclave contains an undefined symbol.

The signing tool should typically reports this type of error when the enclave is
built.

SGX_ERROR_INVALID_MISC

The MiscSelct or MiscMask settings are not correct.

SGX_ERROR_PCL_ENCRYPTED

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 164 -

Enclave is encrypted but input parameters do not include the required con-
tent (e.g. sealed decryption key blob).

SGX_ERROR_PCL_NOT_ENCRYPTED

Enclave is not encrypted but input parameters include content for enclave
decryption.

SGX_ERROR_FEATURE_NOT_SUPPORTED

Desired feature is not supported.

SGX_ERROR_MEMORY_MAP_FAILURE

Failed to reserve memory for the enclave.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

The sgx_create_enclave_ex function loads and initializes the enclave as
described by sgx_create_enclave. In addition, sgx_create_enclave_
ex activates extended features, based on the input provided in ex_fea-
tures and ex_features_p parameters.

The following extended features are currently supported:

l Intel® SGX Protected Code Loader that enables loading encrypted
enclaves.

l Switchless Calls. For more information, see the Switchless Calls section.

l Key Separation & Sharing (KSS). You can specify a different sgx_kss_con-
fig_t structure to load a KSS enabled enclave to have additional control
options over the key derivation process. The KSS enabled enclave
should be signed with EnableKSS set to 1 in the configuration file.

The described extended features are independent but can also work
together.

Notes on signal handling:If the Linux* kernel you use does not support the
vDSO function to enter the enclave, URTS installs a signal handler for
SIGSEGV, SIGILL, SIGFPE, SIGBUS, SIGTRAP during the first call of the sgx_
create_enclave_ex function, after the enclave is successfully loaded and
initialized (EINIT is done). Its purpose is to handle signals caused by excep-
tions inside enclaves or at EENTER, ERESUME instructions used to enter
enclaves. The handler invokes previously installed signal handlers to handle

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 165 -

those signals raised in other situations unrelated to enclaves. If an application
installs signal handler(s) for these signals after the call of sgx_create_
enclave_ex, the newly installed handler(s) should also forward those signals
to the previously installed handler ifor enclave related exceptions to be
handled properly by the URTS handler. If the Linux* kernel you use supports
the vDSO function to enter the enclave, the vDSO function intercepts any
exceptions that occur when running the enclave.

Requirements

Header sgx_urts.h
Library libsgx_urts.so or libsgx_urts_sim.so (simulation)

sgx_create_encrypted_enclave

Loads the encrypted enclave using its file name. Enables Intel® SGX PCL.

Syntax

sgx_status_t sgx_create_encrypted_enclave(

const char *file_name,
const int debug,
sgx_launch_token_t *launch_token,
int *launch_token_updated,
sgx_enclave_id_t *enclave_id,
sgx_misc_attribute_t *misc_attr,
uint8_t* sealed_key

);

Parameters

file_name [in]

Name or full path to the enclave image.

debug [in]

The valid value is 0 or 1.

0 indicates to create the enclave in non-debug mode. An enclave created in
non-debug mode cannot be debugged.

1 indicates to create the enclave in debug mode. The code/data memory
inside an enclave created in debug mode is accessible by the debugger or
other software outside of the enclave and thus is not under the same memory
access protections as an enclave created in non-debug mode.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 166 -

Enclaves should only be created in debug mode for debug purposes. A helper
macro SGX_DEBUG_FLAG is provided to create an enclave in debug mode. In
release builds, the value of SGX_DEBUG_FLAG is 0. In debug and pre-release
builds, the value of SGX_DEBUG_FLAG is 1 by default.

launch_token [deprecated]

Pointer to an sgx_launch_token_t object used to initialize the enclave to be
created (deprecated).

launch_token_updated [deprecated]

This parameter is deprecated.

enclave_id [out]

Pointer to an sgx_enclave_id_t that receives the enclave ID or handle. Must
not be NULL.

misc_attr [out, optional]

Pointer to an sgx_misc_attribute_t structure that receives the misc select and
attributes of the enclave. This pointer may be NULL if the information is not
needed.

sealed_key [in]

Pointer to a sealed Intel® SGX PCL decryption key.

Return value

SGX_SUCCESS

The enclave is loaded and initialized successfully.

SGX_ERROR_INVALID_ENCLAVE

The enclave file is corrupted.

SGX_ERROR_INVALID_PARAMETER

The ‘enclave_id’ parameter is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete sgx_create_enclave().

SGX_ERROR_ENCLAVE_FILE_ACCESS

The enclave file cannot be opened. Possible reasons: the file is not found or
you have no privilege to access the file.

SGX_ERROR_INVALID_METADATA

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 167 -

The metadata embedded within the enclave image is corrupted or missing.

SGX_ERROR_INVALID_VERSION

The enclave metadata version (created by the signing tool) and the untrusted
library version (uRTS) do not match.

SGX_ERROR_INVALID_SIGNATURE

The signature for the enclave is not valid.

SGX_ERROR_OUT_OF_EPC

The protected memory has run out. Possible reasons: you are creating too
many enclaves, the enclave requires too much memory, or one of the Archi-
tecture Enclaves needed for this operation cannot be loaded.

SGX_ERROR_NO_DEVICE

The Intel® SGX device is not valid. Possible reasons: the Intel® SGX driver is dis-
abled or not installed.

SGX_ERROR_MEMORY_MAP_CONFLICT

During enclave creation, a race condition for mapping memory between the
loader and another thread occurred. The loader may fail to map virtual
address. Create the enclave again.

SGX_ERROR_DEVICE_BUSY

The Intel® SGX driver or a low level system is busy when creating the enclave.
Createthe enclave again.

SGX_ERROR_MODE_INCOMPATIBLE

The target enclave mode is incompatible with the mode of the current RTS.
Reason examples: a 64-bit application tries to load a 32-bit enclave or a sim-
ulation uRTS tries to load a hardware enclave.

SGX_ERROR_SERVICE_UNAVAILABLE

sgx_create_enclave() needs the AE service to get a launch token. If the
service is not available, the enclave may not be launched.

SGX_ERROR_SERVICE_TIMEOUT

The request to the AE service timed out.

SGX_ERROR_SERVICE_INVALID_PRIVILEGE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 168 -

The request requires some special attributes for the enclave, but does not
have priviledge.

SGX_ERROR_NDEBUG_ENCLAVE

The enclave is signed as a product enclave and cannot be created as a debug-
gable enclave.

SGX_ERROR_UNDEFINED_SYMBOL

The enclave contains an undefined symbol.

The signing tool should typically report this type of error when the enclave is
built.

SGX_ERROR_INVALID_MISC

The MiscSelct/MiscMask settings are not correct.

SGX_ERROR_PCL_NOT_ENCRYPTED

Enclave is not encrypted. This function cannot be used to load an enclave that
was not encrypted by the encryption tool. Use sgx_create_encalve or sgx_cre-
ate_enclave_ex.

SGX_ERROR_MEMORY_MAP_FAILURE

Failed to reserve memory for the enclave.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

The sgx_create_encrypted_enclave function loads and initializes an
encrypted enclave using the enclave file name, the launch token, and the
sealed decryption key blob. If the launch token is incorrect, the function gets a
new one and save it back to the input parameter “token”. The parameter
“updated” indicates that the launch token has been updated.

If the enclave launch token and the sealed decryption key blob are valid, the
function returns SGX_SUCCESS. The enclave ID (handle) is returned via the
enclave_id parameter.

The library libsgx_urts.so provides this function to load an enclave with
the Intel® SGX hardware, and it cannot be used to load an enclave linked with
the simulation library. On the other hand, the simulation librarylibsgx_
urts_sim.a exposes an identical interface which can only load a simulation

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 169 -

enclave. The simulation mode does not require the Intel® SGX hard-
ware/driver. However, it does not provide hardware protection.

The randomization of the load address of the enclave is dependent on the
operating system. The address of the heap and stack is not randomized and is
at a constant offset from the enclave base address. A compromised loader or
an operating system (both of which are outside the TCB) can remove the ran-
domization entirely. The enclave writer should not rely on the randomization
of the base address of the enclave.

Notes on signal handling: If the Linux* kernel you use does not support the
vDSO function to enter the enclave, URTS installs a signal handler for
SIGSEGV, SIGILL, SIGFPE, SIGBUS, SIGTRAP during the first call of the sgx_
create_encrypted_enclave function, after the enclave is successfully
loaded and initialized (EINIT is done). Its purpose is to handle signals caused
by exceptions inside enclaves or at EENTER, ERESUME instructions used to
enter enclaves. The handler invokes previously installed signal handlers to
handle those signals raised in other situations unrelated to enclaves. If an
application installs signal handler(s) for these signals after sgx_create_
encrypted_enclave is called, the newly installed handler(s) should also for-
ward those signals to the previously installed handler for enclave related
exceptions to be handled properly by the URTS handler. If the Linux* kernel
you use supports the vDSO function to enter the enclave, the vDSO function
intercepts any exceptions that occur when running the enclave.

Requirements

Header sgx_urts.h
Library libsgx_urts.so or libsgx_urts_sim.so (simulation)

sgx_create_enclave_from_buffer_ex

Loads an enclave from memory.

Enables extended features, the Intel® SGX PCL, Switchless Calls initialization,
and Key Separation & Sharing (KSS).

Syntax

sgx_status_t sgx_create_enclave_from_buffer_ex(

uint8_t *buffer,
size_t buffer_size,
const int debug,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 170 -

sgx_enclave_id_t *enclave_id,
sgx_misc_attribute_t *misc_attr,
const uint32_t ex_features,
const void* ex_features_p[32]

);

Parameters

buffer [in]

Pointer to the enclave image buffer. Must not be NULL.

buffer_size [in]

Size of the enclave image buffer. Must be non-zero.

debug [in]

The valid value is 0 or 1.

0 indicates creating the enclave in a non-debug mode. An enclave created in
the non-debug mode cannot be debugged.

1 indicates creating the enclave in a debug mode. The code or data memory
inside an enclave created in the debug mode is accessible by a debugger or
another software outside the enclave. Thus, this enclave is not under the same
memory access protections as a non-debug enclave.

You should create enclaves in the debug mode for debug purposes only. To
create an enclave in this mode, you can use a helper macro SGX_DEBUG_
FLAG. In release builds, the value of SGX_DEBUG_FLAG is 0. In debug and
pre-release builds, the value of SGX_DEBUG_FLAG is 1 by default.

enclave_id [out]

Pointer to an sgx_enclave_id_t that receives the enclave ID or handle. Must
not be NULL.

misc_attr [out, optional]

Pointer to an sgx_misc_attribute_t structure that receives the misc select and
attributes of the enclave. This pointer can be NULL if the information is not
needed.

ex_features [in]

Bitmask defining extended features to be activated during the enclave cre-
ation.

Bit [0] – enable the Intel® SGX PCL.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 171 -

Bit [1] – enable Switchless Calls.

Bit [2] - enable Key Separation & Sharing (KSS).

Bits [3:31] – reserved, must be 0.

ex_features_p [in]

Array of pointers to extended feature control structures. The index of the
extended feature control structure in the array is the same as the index of the
feature enable bit in ex_features.

ex_features_p[0] – pointer to an Intel® SGX PCL sealed key.

ex_features_p[1] – pointer to the sgx_uswitchless_config_t structure.

ex_features_p[2] - pointer to the sgx_kss_config_t structure.

ex_features_p[3:31] – reserved, must be NULL.

Return value

SGX_SUCCESS

Enclave is loaded and initialized successfully.

SGX_ERROR_INVALID_ENCLAVE

Enclave file is corrupted.

SGX_ERROR_INVALID_PARAMETER

‘enclave_id’ parameter is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete sgx_create_enclave_ex().

SGX_ERROR_ENCLAVE_FILE_ACCESS

Enclave file cannot be opened. Possible reasons: the file is not found or you do
not have privilege to access the file.

SGX_ERROR_INVALID_METADATA

Metadata embedded within the enclave image is corrupted or missing.

SGX_ERROR_INVALID_VERSION

Enclave metadata version (created by the signing tool) and the untrusted lib-
rary version (uRTS) do not match.

SGX_ERROR_INVALID_SIGNATURE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 172 -

Signature for the enclave is not valid.

SGX_ERROR_OUT_OF_EPC

Protected memory has run out. Possible reasons: you are creating too many
enclaves, the enclave requires too much memory, or one of the Architecture
Enclaves for this operation cannot be loaded.

SGX_ERROR_NO_DEVICE

Intel® SGX device is not valid. Possible reasons: the Intel® SGX driver is dis-
abled or not installed.

SGX_ERROR_MEMORY_MAP_CONFLICT

During enclave creation, a race condition for mapping memory between the
loader and another thread occurred. The loader may fail to map the virtual
address. Create the enclave again.

SGX_ERROR_DEVICE_BUSY

Intel® SGX driver or alow level system is busy when creating the enclave.
Create the enclave again.

SGX_ERROR_MODE_INCOMPATIBLE

Target enclave mode is incompatible with the mode of the current RTS.
Reason examples: a 64-bit application tries to load a 32-bit enclave or a sim-
ulation uRTS tries to load a hardware enclave.

SGX_ERROR_SERVICE_UNAVAILABLE

sgx_create_enclave() needs the AE service to get a launch token. If the
service is not available, the enclave may not be launched.

SGX_ERROR_SERVICE_TIMEOUT

Request to the AE service has timed out.

SGX_ERROR_SERVICE_INVALID_PRIVILEGE

Request requires some special attributes for the enclave, but it is not priv-
ileged.

SGX_ERROR_NDEBUG_ENCLAVE

Enclave is signed as a product enclave and cannot be created as a debuggable
enclave.

SGX_ERROR_UNDEFINED_SYMBOL

Enclave contains an undefined symbol.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 173 -

This type of error typically occurs when the enclave is built.

SGX_ERROR_INVALID_MISC

The MiscSelct or MiscMask settings are not correct.

SGX_ERROR_PCL_ENCRYPTED

Enclave is encrypted but input parameters do not include the required con-
tent (for example, sealed decryption key blob).

SGX_ERROR_PCL_NOT_ENCRYPTED

Enclave is not encrypted but input parameters include content for enclave
decryption.

SGX_ERROR_FEATURE_NOT_SUPPORTED

Desired feature is not supported.

SGX_ERROR_MEMORY_MAP_FAILURE

Failed to reserve memory for the enclave.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

The sgx_create_enclave_from_buffer_ex function loads an enclave.
This function supports extended features if the input is provided in ex_fea-
tures and ex_features_p parameters. Unlike the sgx_create_
enclave_ex function, the sgx_create_enclave_from_buffer_ex func-
tion allows you to load an enclave from memory without using its file name.

The following extended features are currently supported:

l Intel® SGX Protected Code Loader that enables loading encrypted
enclaves.

l Switchless Calls. For more information, see the Switchless Calls section.

l Key Separation & Sharing (KSS). You can specify a different sgx_kss_con-
fig_t structure to load a KSS enabled enclave to have additional control
options over the key derivation process. You should sign the KSS
enabled enclave with EnableKSS set to 1 in the configuration file.

The described extended features are independent but can also work
together.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 174 -

Notes on signal handling:If the Linux* kernel you use does not support the
vDSO function to enter the enclave, URTS installs a signal handler for
SIGSEGV, SIGILL, SIGFPE, SIGBUS, SIGTRAP during the first call of the sgx_
create_enclave_ex function, after the enclave is successfully loaded and
initialized (EINIT is done). Its purpose is to handle signals caused by excep-
tions inside enclaves or at EENTER, ERESUME instructions used to enter
enclaves. The handler invokes previously installed signal handlers to handle
those signals raised in other situations unrelated to enclaves. If an application
installs signal handler(s) for these signals after calling sgx_create_
enclave_ex, the newly installed handler(s) should also forward those signals
to the previously installed handler for enclave related exceptions to be
handled properly by the URTS handler. If the Linux* kernel you use supports
the vDSO function to enter the enclave, the vDSO function intercepts any
exceptions that occur when running the enclave.

Requirements

Header sgx_urts.h
Library libsgx_urts.so or libsgx_urts_sim.so (simulation)

sgx_destroy_enclave

The sgx_destroy_enclave function destroys an enclave and frees its asso-
ciated resources.

Syntax

sgx_status_t sgx_destroy_enclave(

const sgx_enclave_id_t enclave_id
);

Parameters

enclave_id [in]

An enclave ID or handle that was generated by sgx_create_enclave.

Return value

SGX_SUCCESS

The enclave was unloaded successfully.

SGX_ERROR_INVALID_ENCLAVE_ID

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 175 -

The enclave ID (handle) is not valid. The enclave has not been loaded or the
enclave has already been destroyed.

Description

The sgx_destroy_enclave function destroys an enclave and releases its
associated resources and invalidates the enclave ID or handle.

The function will block until no other threads are executing inside the enclave.

It is highly recommended that the sgx_destroy_enclave function be
called after the application has finished using the enclave to avoid possible
deadlocks.

The library libsgx_urts.so exposes this function to destroy a previously
created enclave in hardware mode, while libsgx_urts_sim.so provides a
simulative counterpart.

See more details in Loading and Unloading an Enclave.

Requirements

Header sgx_urts.h
Library libsgx_urts.so or libsgx_urts_sim.so (simulation)

sgx_get_target_info

Gets the target info of an enclave.

Syntax

sgx_status_t sgx_get_target_info(

const sgx_enclave_id_t enclave_id;
sgx_target_info_t* target_info)

);

Parameters

enclave_id [in]

Enclave ID or handle generated by sgx_create_enclave.

target_info [OUT]

Pointer to the sgx_target_info_t object that receives the target info of the
enclave. Must be a non-NULL pointer.

See sgx_target_info_t for structure details.

Return value

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 176 -

SGX_SUCCESS

All outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_INVALID_ENCLAVE_ID

Enclave ID (handle) is not valid. The enclave has not been loaded or the
enclave has already been destroyed.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

The sgx_get_target_info function getss the target info of an enclave.
The enclave should have been loaded.

The library libsgx_urts.so exposes this function to get a previously cre-
ated enclave in a hardware mode, while libsgx_urts_sim.so provides a
simulative counterpart.

See more details in Loading and Unloading an Enclave.

Requirements

Header sgx_urts.h
Library libsgx_urts.so or libsgx_urts_sim.so (simulation)

sgx_select_att_key_id

sgx_select_att_key_id used to select the attestation key.

Syntax

sgx_status_t sgx_select_att_key_id(

const uint8_t *p_att_key_id_list,
uint32_t att_key_idlist_size,
sgx_att_key_id_t *p_att_key_id

);

Parameters

p_att_key_id_list [in]

List of the supported attestation key IDs provided by the quote verifier.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 177 -

att_key_id_list_size

The size of p_att_key_id_list.

p_att_key_id[out]

Pointer to the selected attestation key. Cannot be NULL.

Return value

SGX_SUCCESS

All outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_att_key_id_list is not correct, list header is incorrect, the number
of key IDs in the list exceeds the maximum or p_att_key_id pointer is invalid.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

You can select the attestation key id from the list provided by the off-platform
Quote verifier. Calling sgx_select_att_key_id is the first thing an Intel®
Software Guard Extensions application does when getting a quote of an
enclave. Then call sgx_init_quote_exto generate or obtain the attestation
key. Calculate quote size by Calling sgx_get_quote_size_ex. At last, call
sgx_get_quote_exto generate the quote.

The function will return a sgx_att_key_id_t of attestation keys supported both
by the platform and the relying party. If the platform cannot support one in
the list, the API will return error SGX_ERROR_UNSUPPORTED_ATT_KEY_ID. If
the caller doesn't supply a list (p_att_key_id_list == NULL), then the platform
software deem the relying party support all kinds of attestation keys. If there
are multiple attestation keys are supported by both the platform and the rely-
ing party, in such case, if the "default quoting type" in config file(/etc/aes-
md.conf) is one of them, then the "default quoting type" will be returned;
otherwise, the platform software will choose one of them according to its
internal logic.

Requirements

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 178 -

Header sgx_uae_quote_ex.h
Library libsgx_quote_ex.so or libsgx_quote_ex_sim.so (sim-

ulation)

sgx_init_quote

sgx_init_quote returns information needed by an Intel® SGX application
to get a quote of one of its enclaves.

Syntax

sgx_status_t sgx_init_quote(

sgx_target_info_t *p_target_info,
sgx_epid_group_id_t *p_gid

);

Parameters

p_target_info [out]

Allows an enclave for which the quote is being created, to create report that
only QE can verify.

p_gid [out]

ID of platform’s current Intel® EPID group.

Return value

SGX_SUCCESS

All of the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_BUSY

The requested service is temporarily not available

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_ERROR_SERVICE_UNAVAILABLE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 179 -

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

Calling sgx_init_quote is the first thing an Intel® Software Guard Exten-
sions application does in the process of getting a quote of an enclave. The con-
tent of p_target_info changes when the QE changes. The content of p_gid
changes when the platform SVN changes.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_uae_epid.h
Library libsgx_epid.so or libsgx_epid_sim.so (simulation)

sgx_init_quote_ex

Returns information required by an Intel® SGX application to get a quote of
one of its enclaves.

Syntax

sgx_status_t sgx_init_quote_ex(

const sgx_att_key_id_t *p_att_key_id,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 180 -

sgx_target_info_t *p_target_info,
size_t* p_pub_key_id_size,
uint8_t* p_pub_key_id

);

Parameters

p_att_key_id[in]

Selected attestation key ID returned by sgx_select_att_key_id. Cannot
be NULL.

p_target_info [out]

Allows an enclave for that the quote is being created to create the report that
only QE can verify.

p_pub_key_id_size [out]

This parameter can be used in two ways. If p_pub_key_id is NULL, the API
returns the buffer size required to hold the attestation public key ID. If p_
pub_key_id is not NULL, p_pub_key_size must be large enough to hold
the return attestation public key ID. Must not be NULL.

p_pub_key_id [out]

This parameter can be used in two ways. If it is passed in as NULL and p_pub_
key_id_size is not NULL, the API returns the buffer size required to hold
the attestation public key ID. If the parameter is not NULL, it must point to the
buffer that is at least as long as the value passed in by p_pub_key_id.

Return value

SGX_SUCCESS

All of the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If p_pub_key_id_size, p_att_key_id is NULL, any of the other pointers
are invalid. If p_pub_key_size is not NULL, any of the other pointers are
invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 181 -

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

Request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

Not enough EPC memory is available to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.

SGX_ERROR_ATT_KEY_CERTIFICATION_FAILURE

Failed to generate and certify the attestation key.

SGX_ERROR_UNEXPECTED

Unexpected error was detected.

Description

The application calls this API to request the owner of the selected platform
attestation key to generate or obtain the attestation key.

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_uae_quote_ex.h
Library libsgx_quote_ex.so or libsgx_quote_ex_sim.so (sim-

ulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 182 -

sgx_calc_quote_size

sgx_calc_quote_size returns the required buffer size for the quote.

Syntax

sgx_status_t sgx_calc_quote_size(

const uint8_t *p_sig_rl,
uint32_t sig_rl_size,
uint32_t *p_quote_size

);

Parameters

p_sig_rl [in]

Optional revoke list of signatures, can be NULL.

sig_rl_size [in]

Size of p_sig_rl, in bytes. If p_sig_rl is NULL, then sig_rl_size will be
0.

p_quote_size [out]

Indicate the size of quote buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_quote_size pointer is invalid or the other input parameters are cor-
rupted.

Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx_calc_quote,
call sgx_calc_quote_size first to calculate the buffer size and then alloc-
ate enough memory for the quote.

Requirements

Header sgx_uae_epid.h
Library libsgx_epid.so or libsgx_epid_sim.so (simulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 183 -

sgx_get_quote_size

sgx_get_quote_size is deprecated. Use the sgx_calc_quote_
size function instead.

sgx_get_quote_size returns the required buffer size for the quote.

Syntax

sgx_status_t sgx_get_quote_size(

const uint8_t *p_sig_rl,
uint32_t *p_quote_size

);

Parameters

p_sig_rl [in]

Optional revoke list of signatures, can be NULL.

p_quote_size [out]

Indicate the size of quote buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_quote_size pointer is invalid or the other input parameters are cor-
rupted.

Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx_get_quote,
call sgx_get_quote_size first to get the buffer size and then allocate
enough memory for the quote.

Requirements

Header sgx_uae_epid.h
Library libsgx_epid.so or libsgx_epid_sim.so (simulation)

sgx_get_quote_size_ex

sgx_get_quote_size_ex returns the required buffer size for the quote.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 184 -

Syntax

sgx_status_t sgx_get_quote_size_ex(

const sgx_att_key_id_t *p_att_key_id,
uint32_t *p_quote_size

);

Parameters

p_att_key_id[in]

Selected attestation key ID returned by sgx_select_att_key_id. Cannot
be NULL.

p_quote_size [out]

Indicate the size of quote buffer. Cannot be NULL.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_quote_size pointer is invalid or the other input parameters are cor-
rupted.

SGX_ERROR_ATT_KEY_UNINITIALIZED

The platform quoting infrastructure does not have the attestation key avail-
able to generate quotes. Call sgx_init_quote_ex again.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.

Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx_get_quote_
ex, call sgx_get_quote_size_ex first to get the buffer size and then alloc-
ate enough memory for the quote.

Requirements

Header sgx_uae_quote_ex.h
Library libsgx_quote_ex.so or libsgx_quote_ex_sim.so (sim-

ulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 185 -

sgx_get_quote

sgx_get_quote generates a linkable or un-linkable QUOTE.

Syntax

sgx_status_t sgx_get_quote(

const sgx_report_t *p_report,
sgx_quote_sign_type_t quote_type,
const sgx_spid_t *p_spid,
const sgx_quote_nonce_t *p_nonce,
const uint8_t *p_sig_rl,
uint32_t sig_rl_size,
sgx_report_t *p_qe_report,
sgx_quote_t *p_quote,
uint32_t quote_size

);

Parameters

p_report [in]

Report of enclave for which quote is being calculated.

quote_type [in]

SGX_UNLINKABLE_SIGNATURE for unlinkable quote or SGX_LINKABLE_
SIGNATURE for linkable quote.

p_spid [in]

ID of service provider.

p_nonce [in]

Optional nonce, if p_qe_report is not NULL, then nonce should not be NULL
as well.

p_sig_rl [in]

Optional revoke list of signatures, can be NULL.

sig_rl_size [in]

Size of p_sig_rl, in bytes. If the p_sig_rl is NULL, then sig_rl_size
shall be 0.

p_qe_report [out]

Optional output. If not NULL, report of QE target to the calling enclave will be
copied to this buffer, and in this case, nonce should not be NULL as well.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 186 -

p_quote [out]

The major output of get_quote, the quote itself, linkable or unlinkable
depending on quote_type input. quote cannot be NULL.

quote_size [in]

Indicates the size of the quote buffer. To get the size, user shall call sgx_
calc_quote_size first.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 187 -

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

Both Intel® EPID Member and Verifier need to know the Group Public Key and
the Intel® EPID Parameters used. These values not being returned by either
sgx_init_quote() or sgx_get_quote() reflects the reliance on the
Attestation Service for Intel® Software Guard Extensions. With the Attestation
Service in place, simply sending the GID to the Attestation Service (through
the Intel® SGX application and PS) is sufficient for the Attestation Service to
know which public key and parameters to use.

The purpose of p_qe_report is for the ISV enclave to confirm the QUOTE it
received is not modified by the untrusted SW stack, and not a replay. The
implementation in QE is to generate a REPORT targeting the ISV enclave (tar-
get info from p_report) , with the lower 32Bytes in report.data =
SHA256(p_nonce||p_quote). The ISV enclave can verify the p_qe_
report and report.data to confirm the QUOTE has not be modified and
is not a replay. It is optional.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_uae_epid.h
Library libsgx_epid.so or libsgx_epid_sim.so (simulation)

sgx_get_quote_ex

sgx_get_quote_ex takes the application enclave REPORT and generates a
QUOTE.

Syntax

sgx_status_t sgx_get_quote_ex(

const sgx_report_t *p_app_report,
const sgx_att_key_id_t *p_att_key_id,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 188 -

sgx_qe_report_info_t *p_qe_report_info,
sgx_quote_t *p_quote,
uint32_t quote_size

);

Parameters

p_app_report [in]

Report of the enclave for that the quote is being calculated. Cannot be NULL.

p_att_key_id[in]

Selected attestation key ID returned by sgx_select_att_key_id. Cannot
be NULL.

p_qe_report_info [in, out]

Optional input and output contain the information required to generate a
REPORT that can be verified by the application enclave.

p_quote [out]

The major output of sgx_get_quote_ex, the quote itself cannot be NULL.

quote_size [in]

Indicates the size of the quote buffer. To get the size, user shall call sgx_
get_quote_size_ex first.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 189 -

Request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.

SGX_ERROR_ATT_KEY_UNINITIALIZED

The platform quoting infrastructure does not have the attestation key avail-
able to generate quotes. Call sgx_init_quote_ex again.

SGX_ERROR_UNEXPECTED

Unexpected error was detected.

Description

The function takes the application enclave REPORT that will be converted into
a quote after the QE verifies the REPORT. After the verification, the QE signs
the REPORT with the platform attestation key matching the selected attest-
ation key ID. If the key is not available, this API may return an error SGX_ATT_
KEY_NOT_INITIALIZED depending on the algorithm. In this case, call sgx_
init_quote_ex to re-generate and certify the attestation key.

The purpose of qe_report in p_qe_report_info is for the ISV enclave to
confirm the QUOTE it received is not modified by the untrusted SW stack, and
not a replay. The implementation in QE is to generate a REPORT targeting the
ISV enclave (app_enclave_target_info from p_app_report) , with the lower
32Bytes in report.data = SHA256(nonce||p_quote) (nonce from p_
app_report). The ISV enclave can verify the qe_reportand report.data
to confirm the QUOTE has not been modified and is not a replay. It is optional.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 190 -

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_uae_quote_ex.h

Library libsgx_quote_ex.so or libsgx_quote_ex_sim.so (sim-
ulation)

sgx_get_supported_att_key_id_num

sgx_get_suooroted_att_key_id_num returns the number of supported
attestation key IDs on the platform.

Syntax

sgx_status_t sgx_get_supported_att_key_id_num(

uint32_t *p_att_key_id_num
);

Parameters

p_att_key_id_num[out]

Indicate the pointer to the location where the required number will be
returned.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_att_key_id_num pointer is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 191 -

A request to AE service timed out.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

You need to call this function before getting supported attestation key IDs.
The number is variable depending on the platform. You can use the returned
p_att_key_id_num to allocate the buffer whose size is sizeof sgx_att_
key_id_ext_t * att_key_id_num to hold the supported attestation key
IDs.

Requirements

Header sgx_uae_quote_ex.h
Library libsgx_quote_ex.so or libsgx_quote_ex_sim.so (sim-

ulation)

sgx_get_supported_att_key_ids

sgx_get_supported_att_key_ids returns an array of all supported
attestation key IDs.

Syntax

sgx_status_t sgx_get_supported_att_key_ids(

sgx_att_key_id_ext_t *p_att_key_id_list,
uint32_t att_key_id_num

);

Parameters

p_att_key_id_list [out]

Pointer to the buffer that will contain supported attestation key IDs. The buf-
fer size must be sizeof sgx_att_key_id_ext_t * att_key_id_num.

att_key_id_num [in]

Indicate the the number of supported attestation key IDs. To get the number,
call sgx_get_supported_att_key_id_num first.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 192 -

SGX_ERROR_INVALID_PARAMETER

The p_att_key_id_list pointer is invalid or att_key_id_num is not cor-
rect.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

You can get all supported attestation key IDs on the platform used by aesm_
service.

Requirements

Header sgx_uae_quote_ex.h
Library libsgx_quote_ex.so or libsgx_quote_ex_sim.so (sim-

ulation)

sgx_ra_get_msg1

sgx_ra_get_msg1 is used to get the Intel® EPID remote attestation and key
exchange protocol message 1 to send to a service provider. The application
enclave should use sgx_ra_init function to create the remote attestation
and key exchange process context, and return to the untrusted code, before
the untrusted code can invoke this function.

Syntax

sgx_status_t sgx_ra_get_msg1(

sgx_ra_context_t context,
sgx_enclave_id_t eid,
sgx_ecall_get_ga_trusted_t p_get_ga,
sgx_ra_msg1_t *p_msg1

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 193 -

Parameters

context [in]

Context returned by the sgx_ra_init function inside the application
enclave.

eid [in]

ID of the application enclave which is going to be attested.

p_get_ga [in]

Function pointer of the ECALL proxy sgx_ra_get_ga generated by sgx_
edger8r. The application enclave should link with sgx_tkey_exchange lib-
rary and import sgx_tkey_exchange.edl in the enclave EDL file to expose
the ECALL proxy for sgx_ra_get_ga.

p_msg1 [out]

Message 1 used by the remote attestation and key exchange protocol.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 194 -

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

The application also passes in a pointer to the untrusted proxy corresponding
to sgx_ra_get_ga, which is exposed by the trusted key exchange library.
This reflects the fact that the names of untrusted proxies are enclave-specific.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_ukey_exchange.h
Library libsgx_ukey_exchange.a

sgx_ra_get_msg1_ex

sgx_ra_get_msg1_ex is used to get the Intel® EPID or ECDSA remote
attestation and key exchange protocol message 1 to send to a service pro-
vider. The application enclave should use sgx_ra_init_ex function to cre-
ate the remote attestation and key exchange process context, and return to
the untrusted code, before the untrusted code can invoke this function.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 195 -

Syntax

sgx_status_t sgx_ra_get_msg1_ex(

const sgx_att_key_id_t *p_att_key_id,
sgx_ra_context_t context,
sgx_enclave_id_t eid,
sgx_ecall_get_ga_trusted_t p_get_ga,
sgx_ra_msg1_t *p_msg1

);

Parameters

p_att_key_id [in]

Selected attestation key ID returned by sgx_select_att_key_id.

context [in]

Context returned by the sgx_ra_init_ex function inside the application
enclave.

eid [in]

ID of the application enclave which is going to be attested.

p_get_ga [in]

Function pointer of the ECALL proxy sgx_ra_get_ga generated by sgx_
edger8r. The application enclave should link with sgx_tkey_exchange lib-
rary and import sgx_tkey_exchange.edl in the enclave EDL file to expose
the ECALL proxy for sgx_ra_get_ga.

p_msg1 [out]

Message 1 used by the remote attestation and key exchange protocol.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 196 -

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

Request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_INVALID_STATE

The API is invoked in an incorrect order or state.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.

SGX_ERROR_ATT_KEY_CERTIFICATION_FAILURE

Failed to generate and certify the attestation key.

SGX_ERROR_UNEXPECTED

Unexpected error was detected.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 197 -

The application also passes in a pointer to the untrusted proxy corresponding
to sgx_ra_get_ga, which is exposed by the trusted key exchange library.
This reflects the fact that the names of untrusted proxies are enclave-specific.

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_ukey_exchange.h
Library libsgx_ukey_exchange.a

sgx_ra_proc_msg2

sgx_ra_proc_msg2 is used to process the remote attestation and key
exchange protocol message 2 from the service provider and generate mes-
sage 3 to send to the service provider. If the service provider accepts mes-
sage 3, negotiated session keys between the application enclave and the
service provider are ready for use. The application enclave can use sgx_ra_
get_keys function to retrieve the negotiated keys and can use sgx_ra_
close function to release the context of the remote attestation and key
exchange process. If processing message 2 results in an error, the application
should notify the service provider of the error or the service provider needs a
time-out mechanism to terminate the remote attestation transaction when it
does not receive message 3.

Syntax

sgx_status_t sgx_ra_proc_msg2(

sgx_ra_context_t context,
sgx_enclave_id_t eid,
sgx_ecall_proc_msg2_trusted_t p_proc_msg2,
sgx_ecall_get_msg3_trusted_t p_get_msg3,
const sgx_ra_msg2_t *p_msg2,
uint32_t msg2_size,
sgx_ra_msg3_t **pp_msg3,
uint32_t *p_msg3_size

);

Parameters

context [in]

Context returned by sgx_ra_init.

eid [in]

ID of the application enclave which is going to be attested.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 198 -

p_proc_msg2 [in]

Function pointer of the ECALL proxy sgx_ra_proc_msg2_trusted_t gen-
erated by sgx_edger8r. The application enclave should link with sgx_
tkey_exchange library and import the sgx_tkey_exchange.edl in the
EDL file of the application enclave to expose the ECALL proxy for sgx_ra_
proc_msg2.

p_get_msg3 [in]

Function pointer of the ECALL proxy sgx_ra_get_msg3_trusted_t gen-
erated by sgx_edger8r. The application enclave should link with sgx_
tkey_exchange library and import the sgx_tkey_exchange.edl in the
EDL file of the application enclave to expose the ECALL proxy for sgx_ra_
get_msg3.

p_msg2 [in]

sgx_ra_msg2_t message 2 from the service provider received by applic-
ation.

msg2_size [in]

The length of p_msg2 (in bytes).

pp_msg3 [out]

sgx_ra_msg3_t message 3 to be sent to the service provider. The message
buffer is allocated by the sgx_ukey_exchange library. The caller should
free the buffer after use.

p_msg3_size [out]

The length of pp_msg3 (in bytes).

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 199 -

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_INVALID_SIGNATURE

The signature is invalid.

SGX_ERROR_MAC_MISMATCH

Indicates verification error for reports, sealed data, etc.

SGX_ERROR_KDF_MISMATCH

Indicates key derivation function does not match.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 200 -

An unexpected error was detected.

Description

The sgx_ra_proc_msg2 processes the incoming message 2 and returns
message 3. Message 3 is allocated by the library, so the caller should free it
after use.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this API if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_ukey_exchange.h
Library libsgx_ukey_exchange.a

sgx_ra_proc_msg2_ex

sgx_ra_proc_msg2_ex is used to process the remote attestation and key
exchange protocol message 2 from the service provider and generate mes-
sage 3 to send to the service provider. If the service provider accepts mes-
sage 3, negotiated session keys between the application enclave and the
service provider are ready for use. The application enclave can use sgx_ra_
get_keys function to retrieve the negotiated keys and can use sgx_ra_
close function to release the context of the remote attestation and key
exchange process. If processing message 2 results in an error, the application
should notify the service provider of the error or the service provider needs a
time-out mechanism to terminate the remote attestation transaction when it
does not receive message 3.

Syntax

sgx_status_t sgx_ra_proc_msg2_ex(

const sgx_att_key_id_t *p_att_key_id,
sgx_ra_context_t context,
sgx_enclave_id_t eid,
sgx_ecall_proc_msg2_trusted_t p_proc_msg2,
sgx_ecall_get_msg3_trusted_t p_get_msg3,
const sgx_ra_msg2_t *p_msg2,
uint32_t msg2_size,
sgx_ra_msg3_t **pp_msg3,
uint32_t *p_msg3_size

);

Parameters

p_att_key_id[in]

Selected attestation key ID returned from sgx_select_att_key_id.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 201 -

context [in]

Context returned by sgx_ra_init.

eid [in]

ID of the application enclave that is going to be attested.

p_proc_msg2 [in]

Function pointer of the ECALL proxy sgx_ra_proc_msg2_trusted_t gen-
erated by sgx_edger8r. The application enclave should link with sgx_
tkey_exchange library and import the sgx_tkey_exchange.edl in the
EDL file of the application enclave to expose the ECALL proxy for sgx_ra_
proc_msg2.

p_get_msg3 [in]

Function pointer of the ECALL proxy sgx_ra_get_msg3_trusted_t gen-
erated by sgx_edger8r. The application enclave should link with sgx_
tkey_exchange library and import the sgx_tkey_exchange.edl in the
EDL file of the application enclave to expose the ECALL proxy for sgx_ra_
get_msg3.

p_msg2 [in]

sgx_ra_msg2_t message 2 from the service provider received by applic-
ation.

msg2_size [in]

The length of p_msg2 (in bytes).

pp_msg3 [out]

sgx_ra_msg3_t message 3 to be sent to the service provider. The message
buffer is allocated by the sgx_ukey_exchange library. The caller should
free the buffer after use.

p_msg3_size [out]

The length of pp_msg3 (in bytes).

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 202 -

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_EPID_MEMBER_REVOKED

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

Request to AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_INVALID_STATE

The API is invoked in an incorrect order or state. Before calling this API, user
should call sgx_ra_get_msg1_ex first.

SGX_ERROR_INVALID_SIGNATURE

The signature is invalid.

SGX_ERROR_MAC_MISMATCH

Indicates verification error for reports, sealed data, etc.

SGX_ERROR_KDF_MISMATCH

Indicates key derivation function does not match.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 203 -

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.

SGX_ERROR_INVALID_ATT_KEY_CERT_DATA

The data returned by the platform library's sgx_get_quote_config is
invalid.

SGX_ERROR_UNEXPECTED

Unexpected error was detected.

Description

The sgx_ra_proc_msg2_ex processes the incoming message 2 and returns
message 3. Message 3 is allocated by the library, so the caller should free it
after use.

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_ukey_exchange.h
Library libsgx_ukey_exchange.a

sgx_report_attestation_status

sgx_report_attestation_status reports information from the Intel
Attestation Server during a remote attestation to help to decide whether a
TCB update is required. It is recommended to always call sgx_report_
attestation_status after a remote attestation transaction when it results
in a Platform Info Blob (PIB).

The attestation_status indicates whether the ISV server decided to
trust the enclave or not.

l The value pass:0 indicates that the ISV server trusts the enclave. If the
ISV server trusts the enclave and platform services, sgx_report_
attestation_status will not take actions to correct the TCB that will
cause negative user experience such as long latencies or requesting a
TCB update.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 204 -

l The value fail:!=0 indicates that the ISV server does not trust the
enclave. If the ISV server does not trust the enclave or platform services,
sgx_report_attestation_statuswill take all actions to correct
the TCB which may incur long latencies and/or request the application to
update one of the Intel SGX’s TCB components. It is the ISV’s respons-
ibility to provide the TCB component updates to the client platform.

Syntax

sgx_status_t sgx_report_attestation_status (

const sgx_platform_info_t* p_platform_info
int attestation_status,
sgx_update_info_bit_t* p_update_info

);

Parameters

p_platform_info [in]

Pointer to opaque structure received from Intel Attestation Server.

attestation_status [in]

The value indicates whether remote attestation succeeds or fails. If attestation
succeeds, the value is 0. If it fails, the value will be others.

p_update_info [out]

Pointer to the buffer that receives the update information only when the
return value of sgx_report_attestation_status is SGX_ERROR_
UPDATE_NEEDED.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 205 -

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_BUSY

This service is temporarily unavailable.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

The application calls sgx_report_attestation_status after remote
attestation to help to recover the TCB.

Requirements

Header sgx_uae_epid.h
Library libsgx_epid.so or libsgx_uae_service_sim.so (sim-

ulation)

sgx_check_update_status

sgx_check_update_status reports information from the Intel Attestation
Server during a remote attestation to help to learn whether a TCB update is
available, and whether Intel® EPID provisioning or PSE provisioning/long-term
pairing is or was needed or pending. It is recommended to always call sgx_

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 206 -

check_update_status after a remote attestation transaction when it res-
ults in a Platform Info Blob (PIB).

Syntax

sgx_status_t sgx_check_update_status (

const sgx_platform_info_t* p_platform_info,
sgx_update_info_bit_t* p_update_info,
uint32_t config,
uint32_t* p_status

);

Parameters

p_platform_info [in]

Pointer to opaque structure received from Intel Attestation Server. Can be
NULL when TCB is up to date. If it is, then p_update_info also needs to be
NULL.

p_update_info [out]

Pointer to the buffer that receives the update information only when the
return value of sgx_check_update_status is SGX_ERROR_UPDATE_
NEEDED. Can be NULL.

config [in]

The value indicates whether caller wants to address pending Intel® EPID or
PSE provisioning using the combination of the following bits.

Value Description
bit 0: reserved and must be zero.

bit 1: set if caller wants to trigger Intel® EPID provisioning if it is
needed/pending.

bit 2: set if caller wants to trigger PSE provisioning/long-term pairing if it
is needed/pending.

bit 31..3: reserved and must be zero.

if bit[2:1] == 0: never trigger either Intel® EPID or PSE provisioning/long-term pair-
ing.

p_status [out]

The value will be filled as follows:

Value Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 207 -

bit 0: set if any update is available. Caller can inspect p_update_info to
learn details.

bit 1: set if Intel® EPID provisioning is or was needed/pending. Set or
cleared independent of config input.

bit 2: set if PSE provisioning/long-term pairing is or was needed/pending.
Set or cleared independent of config input.

bit 31..3: reserved and must be zero.

Can be NULL. If all user wants is to know about updates, the API will return
SGX_ERROR_SERVICE_UNAVAILABLE and fill in p_update_info even if p_
status is NULL.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

For example: p_platform_info NULL and p_update_info non-NULL
(can't determine update status w/o PIB). Or p_platform_info NULL and
config == 0 (nothing to do).

SGX_ERROR_UNSUPPORTED_CONFIG

Any unsupported bits in config input are set.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 208 -

SGX_ERROR_BUSY

This service is temporarily unavailable.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

The application calls sgx_check_update_status after remote attestation
to help to recover the TCB and learn whether Intel® EPID provisioning or PSE
provisioning/long-term pairing is or was needed/pending.

Requirements

Header sgx_uae_epid.h
Library libsgx_epid.so or libsgx_uae_service_sim.so (sim-

ulation)

sgx_get_extended_epid_group_id

The function sgx_get_extended_epid_group_id reports which exten-
ded Intel® EPID Group the client uses by default. The key used to sign a Quote
will be a member of the extended Intel® EPID Group reported in this API.

Syntax

sgx_status_t sgx_get_extended_epid_group_id(

uint32_t *p_extended_epid_group_id
);

Parameters

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 209 -

p_extended_epid_group_id [out]

The extended Intel® EPID Group ID.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_extended_epid_group_id pointer is invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

The application uses this value to tell the ISV Service Provider which exten-
ded Intel® EPID Group to use during remote attestation.

Requirements

Header sgx_uae_epid.h

Library libsgx_epid.so or libsgx_uae_service_sim.so (sim-
ulation)

sgx_register_wl_cert_chain

sgx_register_wl_cert_chain helps you to provide an Enclave Signing
Key Allow List Certificate Chain. An Enclave Signing Key Allow List Certificate
Chain contains the signing key(s) of the Intel® SGX application enclave(s). If the
system has not acquired an up-to-date Enclave Signing Key Allow List Cer-
tificate Chain, you can provide the chain to the system by setting sgx_
register_wl_cert_chain.

Syntax

sgx_status_t sgx_register_wl_cert_chain(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 210 -

uint8_t *p_whitelist,
uint32_t whitelist_size

);

Parameters

p_whitelist [out]

A pointer to the allowlist.

whitelist_size [in]

Size of p_whitelist, in bytes.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The Allow List is invalid.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

The request to the AE service timed out.

SGX_ERROR_UNEXPECTED

An unexpected error is detected.

Description

If you have an update-to-date Enclave Signing Key Allow List Certificate Chain,
you need to call sgx_register_wl_cert_chainonce first to launch
enclaves.

Requirements

Header sgx_uae_launch.h
Library libsgx_launch.so or libsgx_launch_sim.so (simulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 211 -

sgx_is_capable

sgx_is_capable helps ISV applications to check if the client platform is
enabled for the Intel® Software Guard Extensions (Intel® SGX). You must run
the client application with the administrator privileges to get the status suc-
cessfully.

Syntax

sgx_status_t sgx_is_capable(

int *sgx_capable
);

Parameters

sgx_capable [out]

Capable status of the Intel SGX device.

1

Platform is enabled for the Intel SGX or the Software Control Interface is avail-
able to configure the Intel SGX device.

0

Intel SGX device is not available or may require manual configuration.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

sgx_capable pointer is invalid.

SGX_ERROR_NO_PRIVILEGE

Application does not have the required privilege to read EFI variables. Run the
application with administrator privileges to query the Intel SGX device status.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 212 -

ISV applications can call sgx_is_capable to detect if the Intel® SGX device
is available. This API is intended to detect cases where software can configure
the Intel SGX device. If 0 is returned, sgx_cap_get_statuscan be used to
detect manual configuration changes that can be made to enable the Intel
SGX device.

Requirements

Header sgx_capable.h
Library libsgx_capable.so and libsgx_capable.a

NOTE:
Administrative privileges are required to use this API.

sgx_cap_enable_device

sgx_cap_enable_device helps ISV applications to enable the Intel® Soft-
ware Guard Extensions (Intel® SGX) device and return the appropriate status.
If a reboot is required, an ISV application can decide whether to notify users of
the restart requirement or not.

Syntax

sgx_status_t sgx_cap_enable_device(

sgx_device_status_t *sgx_device_status
);

Parameters

sgx_device_status [out]

Intel® SGX status of the Intel® SGX device.

SGX_ENABLED

Platform is enabled for the Intel® SGX.

SGX_DISABLED_REBOOT_REQUIRED

Platform is disabled for the Intel® SGX. Reboot required to enable the plat-
form.

SGX_DISABLED_MANUAL_ENABLE

Platform is disabled for the Intel® SGX but can be enabled manually through
the BIOS menu. The Software Control Interface is not available to enable the
Intel® SGX on this platform.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 213 -

SGX_DISABLED_HYPERV_ENABLED

Detected version of Windows* OS10 is incompatible with the Hyper-V*. The
Intel® SGX cannot be enabled on the target system unless the Hyper-V* is dis-
abled.

SGX_DISABLED_LEGACY_OS

Operating system does not support UEFI enabling of the the Intel® SGX
device. If the operating system supports UEFI in general, but support for
enabling the Intel® SGX device does not exist, this function returns SGX_
DISABLED.

SGX_DISABLED_UNSUPPORTED_CPU

Processor does not support the Intel SGX.

SGX_DISABLED

Platform is disabled for the Intel® SGX. More details about enabling the Intel®
SGX are unavailable. The Intel® SGX can be manually enabled in the BIOS.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The sgx_device_status pointer is invalid.

SGX_ERROR_NO_PRIVILEGE

Application does not have the required privileges to read an UEFI variable.
Run the application with the administrator privileges to enable the Intel®
SGX device status.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

ISV application can call sgx_cap_enable_device to enable the Intel SGX
device dynamically.

Requirements

Header sgx_capable.h
Library libsgx_capable.so and libsgx_capable.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 214 -

NOTE:
Administrative privileges are required to use this API.

APIs that begin with sgx_cap are utility functions that operate independently
of the Intel® SGX PSW. They do not require the PSW to be installed on the sys-
tem. When the PSW is installed, they have the same behavior.

sgx_cap_get_status

sgx_cap_get_status helps ISV applications check the status of the Intel®
Software Guard Extensions (Intel® SGX) on the client platform. You must run
the client application with the administrator privileges to get the status suc-
cessfully.

Syntax

sgx_status_t sgx_cap_get_status(

sgx_device_status_t *sgx_device_status
);

Parameters

sgx_device_status [out]

Intel® SGX status of the Intel® SGX device.

SGX_ENABLED

Platform is enabled for the Intel® SGX.

SGX_DISABLED_REBOOT_REQUIRED

Platform is disabled for the Intel® SGX. Reboot required for enabling the plat-
form.

SGX_DISABLED_SCI_AVAILABLE

Platform is disabled for the Intel® SGX but can be enabled using the Software
Control Interface.

SGX_DISABLED_MANUAL_ENABLE

Platform is disabled for the Intel® SGX but can be enabled manually through
the BIOS menu. The Software Control Interface is not available to enable the
Intel® SGX on this platform.

SGX_DISABLED_LEGACY_OS

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 215 -

Operating system does not support UEFI enabling of the Intel SGX device. If
the operating system supports the UEFI in general but cannot enable the
Intel® SGX device, the function returns SGX_DISABLED.

SGX_DISABLED_UNSUPPORTED_CPU

Processor does not support the Intel® SGX.

SGX_DISABLED

Platform is disabled for the Intel® SGX. You can try to enable the Intel® SGX
manually through the BIOS menu.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The sgx_device_status pointer is invalid.

SGX_ERROR_NO_PRIVILEGE

Application does not have the required privileges to read EFI variables. Run
the application with the administrator privileges to query the Intel®
SGX device status.

SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

ISV applications can call sgx_cap_get_status to detect if the Intel® SGX is
enabled or can be enabled on the device, using the software interface or by
taking manual configuration steps.

Requirements

Header sgx_capable.h
Library libsgx_capable.so and libsgx_capable.a

NOTE:
Administrator privileges are required to use this API.

APIs that begin with sgx_cap are the utility functions that operate inde-
pendently of the Intel® SGX Platform Software (Intel® SGX PSW). They do not

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 216 -

require the Intel® SGX PSW to be installed on the system. When the Intel®
SGX PSW is installed, the functions behavior remains unchanged.

sgx_get_whitelist_size

sgx_get_whitelist_size returns the required buffer size for the allowl-
ist.

Syntax

sgx_status_t sgx_get_whitelist_size(

uint32_t *p_whitelist_size
);

Parameters

p_whitelist_size [out]

Indicate the size of the allowlist buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_whitelist_size pointer is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 217 -

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx_get_whitel-
ist, call sgx_get_whitelist_size first to get the buffer size and then
allocate enough memory for the quote.

Requirements

Header sgx_uae_launch.h
Library libsgx_launch.so or libsgx_launch_sim.so (simulation)

sgx_get_whitelist

sgx_get_whitelist returns the allowlist used by aesm_service.

Syntax

sgx_status_t sgx_get_whitelist(

uint8_t *p_whitelist,
uint32_t whitelist_size

);

Parameters

p_whitelist [out]

The allowlist.

whitelist_size [in]

Indicate the size of the allowlist buffer. To get the size, call sgx_get_whitel-
ist_size first.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The p_whitelist pointer is invalid or whitelist_size is not correct.

SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 218 -

The AE service did not respond.

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

You can get current allowlist used by aesm_service.

Requirements

Header sgx_uae_launch.h
Library libsgx_launch.so or libsgx_launch_sim.so (simulation)

sgx_is_within_enclave

The sgx_is_within_enclave function checks that the buffer located at
the pointer addr with its length of size is an address that is strictly within
the calling enclave address space.

Syntax

int sgx_is_within_enclave (

const void *addr,
size_t size

);

Parameters

addr [in]

The start address of the buffer.

size [in]

The size of the buffer.

Return value

1

The buffer is strictly within the enclave address space.

0

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 219 -

The whole buffer or part of the buffer is not within the enclave, or the buffer is
wrapped around.

Description

sgx_is_within_enclave simply compares the start and end address of
the buffer with the calling enclave address space. It does not check the prop-
erty of the address. Given a function pointer, you sometimes need to confirm
whether such a function is within the enclave. In this case, it is recommended
to use sgx_is_within_enclave with a size of 1. sgx_is_within_
enclave returns 0 if the buffer is outside the enclave or overlaps with the
enclave boundary. Thus !sgx_is_within_enclave() ≠ sgx_is_out-
side_enclave().

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_is_outside_enclave

The sgx_is_outside_enclave function checks that the buffer located at
the pointer addr with its length of size is an address that is strictly outside
the calling enclave address space.

Syntax

int sgx_is_outside_enclave (

const void *addr,
size_t size

);

Parameters

addr [in]

The start address of the buffer.

size [in]

The size of the buffer.

Return value

1

The buffer is strictly outside the enclave address space.

0

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 220 -

The whole buffer or part of the buffer is not outside the enclave, or the buffer
is wrapped around.

Description

sgx_is_outside_enclave simply compares the start and end address of
the buffer with the calling enclave address space. It does not check the prop-
erty of the address. sgx_is_outside_enclave returns 0 if the buffer is
inside the enclave or overlaps with the enclave boundary. Thus !sgx_is_
outside_enclave() ≠ sgx_is_within_enclave().

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_read_rand

The sgx_read_rand function is used to generate a random number inside
the enclave.

Syntax

sgx_status_t sgx_read_rand(

unsigned char *rand,
size_t length_in_bytes

);

Parameters

rand [out]

A pointer to the buffer that receives the random number. The pointer cannot
be NULL. The rand buffer can be either within or outside the enclave, but it is
not allowed to be across the enclave boundary or wrapped around.

length_in_bytes [in]

The length of the buffer (in bytes).

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Invalid input parameters detected.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 221 -

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the valid random number gen-
eration process.

Description

The sgx_read_rand function is provided to replace the C standard pseudo-
random sequence generation functions inside the enclave, since these stand-
ard functions are not supported in the enclave, such as rand, srand, etc. For
HW mode, the function generates a real-random sequence; while for sim-
ulation mode, the function generates a pseudo-random sequence.

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_wrpkru

The sgx_wrpkru function is used to modify the PKRU register inside an
enclave.

Syntax

int sgx_wrpkru (

uint32_t val
);

Parameters

val [in]

The desired PKRU value.

Return value

1

Write the PKRU register successfully.

0

Fail to write the PKRU register.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 222 -

sgx_wrpkru is used to set the PKRU register with the specific input val
using the wrpkru instruction inside an enclave. It works only if the enclave is
loaded as Protection Keys enabled.

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_rdpkru

The sgx_rdpkru function can be used to read the PKRU register value inside
an enclave.

Syntax

int sgx_rdpkru (

uint32_t *val
);

Parameters

val [out]

The output PKRU value.

Return value

1

Read PKRU register successfully.

0

Fail to read the PKRU register.

Description

sgx_rdpkru is used to read the PKRU register value inside an enclave using
the rdpkru instruction. It works only if the enclave is loaded as Protection
Keys enabled.

Requirements

Header sgx_trts.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 223 -

sgx_register_exception_handler

sgx_register_exception_handler allows developers to register an
exception handler, and specify whether to prepend (when is_first_hand-
ler is equal to 1) or append the handler to the handler chain.

Syntax

void* sgx_register_exception_handler(

int is_first_handler,
sgx_exception_handler_t exception_handler

);

Parameters

is_first_handler [in]

Specify the order in which the handler should be called. If the parameter is
nonzero, the handler is the first handler to be called. If the parameter is zero,
the handler is the last handler to be called.

exception_handler [in]

The exception handler to be called

Return value

Non-zero

Indicates the exception handler is registered successfully. The return value is
an open handle to the custom exception handler.

NULL

The exception handler was not registered.

Description

The Intel® SGX SDK supports the registration of custom exception handler
functions. You can write your own code to handle a limited set of hardware
exceptions. For example, a CPUID instruction inside an enclave will effectively
result in a #UD fault (Invalid Opcode Exception). ISV enclave code can have an
exception handler to prevent the enclave from being trapped into an excep-
tion condition. See Custom Exception Handling for more details.

Calling sgx_register_exception_handler allows you to register an
exception handler, and specify whether to prepend (when is_first_hand-
ler is nonzero) or append the handler to the handler chain.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 224 -

After calling sgx_register_exception_handler to prepend an excep-
tion handler, a subsequent call to this function may add another exception
handler at the beginning of the handler chain. Therefore the order in which
exception handlers are called does not only depend on the value of the is_
first_handler parameter, but more importantly depends on the order in
which exception handlers are registered.

NOTE:
Custom exception handling is only supported in hardware mode. Although the
exception handlers can be registered in simulation mode, the exceptions can-
not be caught and handled within the enclave.

Requirements

Header sgx_trts_exception.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_unregister_exception_handler

sgx_unregister_exception_handler is used to unregister a custom
exception handler.

Syntax

int sgx_unregister_exception_handler(

void* handler
);

Parameters

handler [in]

A handle to the custom exception handler previously registered using the
sgx_register_exception_handler function.

Return value

Non-zero

The custom exception handler is unregistered successfully.

0

The exception handler was not unregistered (not a valid pointer, handler not
found).

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 225 -

The Intel® SGX SDK supports the registration of custom exception handler
functions. An enclave developer can write their own code to handle a limited
set of hardware exceptions. See Custom Exception Handling for more details.

Calling sgx_unregister_exception_handler allows developers to unre-
gister an exception handler that was registered earlier.

Requirements

Header sgx_trts_exception.h
Library libsgx_trts.a or libsgx_trts_sim.a (simulation)

sgx_spin_lock

The sgx_spin_lock function acquires a spin lock within the enclave.

Syntax

uint32_t sgx_spin_lock(

sgx_spinlock_t * lock
);

Parameters

lock [in]

The trusted spin lock object to be acquired.

Return value

0

This function always returns zero after the lock is acquired.

Description

sgx_spin_lock modifies the value of the spin lock by using compiler atomic
operations. If the lock is not available to be acquired, the thread will always
wait on the lock until it can be acquired successfully.

Requirements

Header sgx_spinlock.h
Library libsgx_tstdc.a

sgx_spin_unlock

The sgx_spin_unlock function releases a spin lock within the enclave.

Syntax

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 226 -

uint32_t sgx_spin_unlock(

sgx_spinlock_t * lock
);

Parameters

lock [in]

The trusted spin lock object to be released.

Return value

0

This function always returns zero after the lock is released.

Description

sgx_spin_unlock resets the value of the spin lock, regardless of its current
state. This function simply assigns a value of zero to the lock, which indicates
the lock is released.

Requirements

Header sgx_spinlock.h
Library libsgx_tstdc.a

sgx_thread_mutex_init

The sgx_thread_mutex_init function initializes a trusted mutex object
within the enclave.

Syntax

int sgx_thread_mutex_init(

sgx_thread_mutex_t * mutex,
const sgx_thread_mutexattr_t * unused

);

Parameters

mutex [in]

The trusted mutex object to be initialized.

unused [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 227 -

Unused parameter reserved for future user defined mutex attributes. [NOT
USED]

Return value

0

The mutex is initialized successfully.

EINVAL

The trusted mutex object is invalid. It is either NULL or located outside of
enclave memory.

Description

When a thread creates a mutex within an enclave, sgx_thread_mutex_
init simply initializes the various fields of the mutex object to indicate that
the mutex is available. sgx_thread_mutex_init creates a non-recursive
mutex. The results of using a mutex in a lock or unlock operation before it has
been fully initialized (for example, the function call to sgx_thread_mutex_
init returns) are undefined. To avoid race conditions in the initialization of a
trusted mutex, it is recommended statically initializing the mutex with the
macro SGX_THREAD_MUTEX_INITIALIZER, SGX_THREAD_NON_
RECURSIVE_MUTEX_INITIALIZER ,of, or SGX_THREAD_RECURSIVE_
MUTEX_INITIALIZER instead.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_destroy

The sgx_thread_mutex_destroy function destroys a trusted mutex
object within an enclave.

Syntax

int sgx_thread_mutex_destroy(

sgx_thread_mutex_t * mutex
);

Parameters

mutex [in]

The trusted mutex object to be destroyed.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 228 -

Return value

0

The mutex is destroyed successfully.

EINVAL

The trusted mutex object is invalid. It is either NULL or located outside of
enclave memory.

EBUSY

The mutex is locked by another thread or has pending threads to acquire the
mutex.

Description

sgx_thread_mutex_destroy resets the mutex, which brings it to its initial
status. In this process, certain fields are checked to prevent releasing a mutex
that is still owned by a thread or on which threads are still waiting.

NOTE:
Locking or unlocking a mutex after it has been destroyed results in undefined
behavior. After a mutex is destroyed, it must be re-created before it can be
used again.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_lock

The sgx_thread_mutex_lock function locks a trusted mutex object within
an enclave.

Syntax

int sgx_thread_mutex_lock(

sgx_thread_mutex_t * mutex
);

Parameters

mutex [in]

The trusted mutex object to be locked.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 229 -

Return value

0

The mutex is locked successfully.

EINVAL

The trusted mutex object is invalid.

Description

To acquire a mutex, a thread first needs to acquire the corresponding spin
lock. After the spin lock is acquired, the thread checks whether the mutex is
available. If the queue is empty or the thread is at the head of the queue the
thread will now become the owner of the mutex. To confirm its ownership, the
thread updates the refcount and owner fields. If the mutex is not available, the
thread searches the queue. If the thread is already in the queue, but not at the
head, it means that the thread has previously tried to lock the mutex, but it
did not succeed and had to wait outside the enclave and it has been
awakened unexpectedly. When this happens, the thread makes an OCALL and
simply goes back to sleep. If the thread is trying to lock the mutex for the first
time, it will update the waiting queue and make an OCALL to get suspended.
Note that threads release the spin lock after acquiring the mutex or before
leaving the enclave.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a mutex. Do not split the critical section protected by a
mutex across root ECALLs.

Requirements

Header sgx_thread.h sgx_tsrdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_trylock

The sgx_thread_mutex_trylock function tries to lock a trusted mutex
object within an enclave.

Syntax

int sgx_thread_mutex_trylock(

sgx_thread_mutex_t * mutex
);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 230 -

Parameters

mutex [in]

The trusted mutex object to be try-locked.

Return value

0

The mutex is locked successfully.

EINVAL

The trusted mutex object is invalid.

EBUSY

The mutex is locked by another thread or has pending threads to acquire the
mutex.

Description

A thread may check the status of the mutex, which implies acquiring the spin
lock and verifying that the mutex is available and that the queue is empty or
the thread is at the head of the queue. When this happens, the thread
acquires the mutex, releases the spin lock and returns 0. Otherwise, the
thread releases the spin lock and returns EINVAL/EBUSY. The thread is not sus-
pended in this case.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a mutex. Do not split the critical section protected by a
mutex across root ECALLs.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_mutex_unlock

The sgx_thread_mutex_unlock function unlocks a trusted mutex object
within an enclave.

Syntax

int sgx_thread_mutex_unlock(

sgx_thread_mutex_t * mutex
);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 231 -

Parameters

mutex [in]

The trusted mutex object to be unlocked.

Return value

0

The mutex is unlocked successfully.

EINVAL

The trusted mutex object is invalid or it is not locked by any thread.

EPERM

The mutex is locked by another thread.

Description

Before a thread releases a mutex, it has to verify it is the owner of the mutex. If
that is the case, the thread decreases the refcount by 1 and then may either
continue normal execution or wakeup the first thread in the queue. Note that
to ensure the state of the mutex remains consistent, the thread that is
awakened by the thread releasing the mutex will then try to acquire the
mutex almost as in the initial call to the sgx_thread_mutex_lock routine.

Requirements

Header sgx_thread.h sgxtstdc.edl
Library libsgx_tstdc.a

sgx_thread_rwlock_init

The sgx_thread_rwlock_init function initializes a trusted rwlock object
within the enclave.

Syntax

int sgx_thread_rwlock_init(

sgx_thread_rwlock_t *rwlock,
const sgx_thread_rwlockattr_t *unused

);

Parameters

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 232 -

rwlock [in]

The trusted rwlock object to be initialized.

unused [in]

Unused parameter reserved for future user defined rwlock attributes. [NOT
USED]

Return value

0

The rwlock is initialized successfully.

EINVAL

The trusted rwlock object is invalid. It is either NULL or located outside of
enclave memory.

Description

When a thread creates a rwlock within an enclave, sgx_thread_rwlock_
init simply initializes the various fields of the rwlock object to indicate that
the rwlock is available. The results of using a rwlock in a lock or unlock oper-
ation before it has been fully initialized (for example, the function call to sgx_
thread_rwlock_init returns) are undefined. To avoid race conditions in
the initialization of a trusted rwlock, it is recommended statically initializing
the rwlock with the macro SGX_THREAD_RWLOCK_INITIALIZER.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_rwlock_destroy

The sgx_thread_rwlock_destroy function destroys a trusted rwlock
object within an enclave.

Syntax

int sgx_thread_rwlock_destroy(

sgx_thread_rwlock_t * rwlock
);

Parameters

rwlock [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 233 -

The trusted rwlock object to be destroyed.

Return value

0

The rwlock is destroyed successfully.

EINVAL

The trusted rwlock object is invalid. It is either NULL or located outside of
enclave memory.

EBUSY

The rwlock is locked (either a reader or a writer lock) by another thread or it is
pending threads to acquire the rwlock.

Description

sgx_thread_rwlock_destroy resets the rwlock, which brings it to the ini-
tial status. The function will fail if any thread holds either a reader or a writer
lock or awaits the lock.

NOTE:
Attempting to acquire either a reader or a writer lock after it has destroyed
results in undefined behavior. After a rwlock is destroyed, it must be re-ini-
tialized before it can be used again.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_rwlock_rdlock

The sgx_thread_rwlock_rdlock function acquires a reader lock on the
provided rwlock object.

Syntax

int sgx_thread_rwlock_rdlock(

sgx_thread_rwlock_t * rwlock
);

Parameters

rwlock [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 234 -

The trusted rwlock object to be locked.

Return value

0

The reader lock is acquired.

EINVAL

The trusted rwlock object is invalid.

EDEADLK

This thread currently holds a writer lock on the rwlock object.

Description

Used to acquire a reader lock on rwlock object. The function ensures that no
other threads hold a writer lock on the rwlock object. If no other threads hold
a writer lock, the reader lock is acquired and the function returns successfully.
If another thread is currently holding a writer lock, the function will make an
OCALL to put the thread to sleep until the writer lock is released. When the
writer lock is released, the thread that releases the writer lock will make an
OCALL to wake pending threads, the function will return from the OCALL and
try to obtain the reader lock again.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a reader lock. Do not split a critical section protected by
a lock across root ECALLs.

Requirements

Header sgx_thread.h sgx_tsrdc.edl
Library libsgx_tstdc.a

sgx_thread_rwlock_tryrdlock

The sgx_thread_rwlock_tryrdlock function tries to acquire a reader
lock on the provided rwlock object.

Syntax

int sgx_thread_rwlock_tryrdlock(

sgx_thread_rwlock_t * rwlock
);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 235 -

Parameters

rwlock [in]

The trusted rwlock object to be locked.

Return value

0

The reader lock is acquired.

EINVAL

The trusted rwlock object is invalid.

EDEADLK

This thread currently holds a writer lock on the rwlock object.

EBUSY

Another thread currently holds a writer lock on the rwlock object.

Description

A thread may try to acquire a reader lock on rwlock object. If no other threads
hold a writer lock on the rwlock object, the reader lock is acquired. If another
thread is currently holding a writer lock, the function returns EBUSY.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a reader lock. Do not split a critical section protected by
a lock across root ECALLs.

Requirements

Header sgx_thread.h sgx_tsrdc.edl
Library libsgx_tstdc.a

sgx_thread_rwlock_wrlock

The sgx_thread_rwlock_wrlock function acquires a writer lock on the
provided rwlock object.

Syntax

int sgx_thread_rwlock_wrlock(

sgx_thread_rwlock_t * rwlock
);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 236 -

Parameters

rwlock [in]

The trusted rwlock object to be locked.

Return value

0

The writer lock is acquired.

EINVAL

The trusted rwlock object is invalid.

EDEADLK

This thread currently holds a writer lock on the rwlock object.

Description

To acquire a writer lock on rwlock object, the function ensures that no other
threads hold either a reader or a writer lock on the rwlock object. If no other
threads hold a either a reader or a writer lock, the writer lock is acquired and
the function returned successfully. If another thread currently holds either
lock, the function will make an OCALL to put the thread to sleep until the lock
is released. When either the writer lock or all the reader locks are released, the
thread, that releases the lock, will make an OCALL to wake pending threads.
The function will return from the OCALL and try to obtain the writer lock again.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a writer lock. Do not split a critical section protected by a
lock across root ECALLs.

If a thread currently holds a reader lock attempts to acquire a writer lock, the
thread will deadlock.

Requirements

Header sgx_thread.h sgx_tsrdc.edl
Library libsgx_tstdc.a

sgx_thread_rwlock_trywrlock

The sgx_thread_rwlock_trywrlock function tries to acquire a writer
lock on the provided rwlock object.

Syntax

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 237 -

int sgx_thread_rwlock_trywrlock(

sgx_thread_rwlock_t * rwlock
);

Parameters

rwlock [in]

The trusted rwlock object to be locked.

Return value

0

The writer lock is acquired.

EINVAL

The trusted rwlock object is invalid.

EDEADLK

This thread currently holds a writer lock on the rwlock object.

EBUSY

Another thread currently holds a writer or a reader lock on the rwlock object.

Description

A thread may try to acquire a writer lock on rwlock object. If no other threads
hold a writer lock or a writer lock on the rwlock object, the writer lock is
acquired. If another thread holds a lock, the function returns EBUSY.

NOTE
A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a reader lock. Do not split a critical section protected by
a lock across root ECALLs.

Requirements

Header sgx_thread.h sgx_tsrdc.edl
Library libsgx_tstdc.a

sgx_thread_rwlock_unlock

The sgx_thread_rwlock_unlock function unlocks a trusted mutex object
within an enclave.

Syntax

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 238 -

int sgx_thread_rwlock_unlock(

sgx_thread_rwlock_t * rwlock
);

Parameters

rwlock [in]

The trusted rwlock object to be unlocked.

Return value

0

The rwlock is unlocked successfully.

EINVAL

The trusted rwlock object is invalid.

EPERM

The rwlock is not locked by any thread.

Description

If the thread owns the writer lock, it will release the lock. Otherwise, it will
release a reader lock by decreasing the reader lock refcount by 1. If releasing
a writer lock or the reference count for reader locks becomes zero, indicating
all reader locks, which have been released, the function will attempt to wake
threads, waiting first on reader locks, then on writer locks.

NOTE
Releasing a rwlock when the thread does not hold a lock can return undefined
results.

Requirements

Header sgx_thread.h sgxtstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_init

The sgx_thread_cond_init function initializes a trusted condition vari-
able within the enclave.

Syntax

int sgx_thread_cond_init(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 239 -

sgx_thread_cond_t * cond,
const sgx_thread_condattr_t * unused

);

Parameters

cond [in]

The trusted condition variable.

attr [in]

Unused parameter reserved for future user defined condition variable attrib-
utes. [NOT USED]

Return value

0

The condition variable is initialized successfully.

EINVAL

The trusted condition variable is invalid. It is either NULL or located outside
enclave memory.

Description:

When a thread creates a condition variable within an enclave, it simply ini-
tializes the various fields of the object to indicate that the condition variable is
available. The results of using a condition variable in a wait, signal or broadcast
operation before it has been fully initialized (for example, the function call to
sgx_thread_cond_init returns) are undefined. To avoid race conditions
in the initialization of a condition variable, it is recommended statically ini-
tializing the condition variable with the macro SGX_THREAD_COND_
INITIALIZER.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_destroy

The sgx_thread_cond_destroy function destroys a trusted condition vari-
able within an enclave.

Syntax

int sgx_thread_cond_destroy(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 240 -

sgx_thread_cond_t * cond
);

Parameters

cond [in]

The trusted condition variable to be destroyed.

Return value

0

The condition variable is destroyed successfully.

EINVAL

The trusted condition variable is invalid. It is either NULL or located outside
enclave memory.

EBUSY

The condition variable has pending threads waiting on it.

Description

The procedure first confirms that there are no threads waiting on the con-
dition variable before it is destroyed. The destroy operation acquires the spin
lock at the beginning of the operation to prevent other threads from signaling
to or waiting on the condition variable.

NOTE
Acquiring or releasing a condition variable after it has been destroyed results
in undefined behavior. After a condition variable is destroyed, it must be re-
created before it can be used again.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_wait

The sgx_thread_cond_wait function waits on a condition variable within
an enclave.

Syntax

int sgx_thread_cond_wait(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 241 -

sgx_thread_cond_t * cond,
sgx_thread_mutex_t * mutex

);

Parameters

cond [in]

The trusted condition variable to be waited on.

mutex [in]

The trusted mutex object that will be unlocked when the thread is blocked in
the condition variable.

Return value

0

The thread waiting on the condition variable is signaled by other thread
(without errors).

EINVAL

The trusted condition variable or mutex object is invalid or the mutex is not
locked.

EPERM

The trusted mutex is locked by another thread.

Description:

A condition variable is always used in conjunction with a mutex. To wait on a
condition variable, a thread first needs to acquire the condition variable spin
lock. After the spin lock is acquired, the thread updates the condition variable
waiting queue. To avoid the lost wake-up signal problem, the condition vari-
able spin lock is released after the mutex. This order ensures the function
atomically releases the mutex and causes the calling thread to block on the
condition variable, with respect to other threads accessing the mutex and the
condition variable. After releasing the condition variable spin lock, the thread
makes an OCALL to get suspended. When the thread is awakened, it acquires
the condition variable spin lock. The thread then searches the condition vari-
able queue. If the thread is in the queue, it means that the thread was already
waiting on the condition variable outside the enclave, and it has been
awakened unexpectedly. When this happens, the thread releases the con-
dition variable spin lock, makes an OCALL and simply goes back to sleep.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 242 -

Otherwise, another thread has signaled or broadcasted the condition variable
and this thread may proceed. Before returning, the thread releases the con-
dition variable spin lock and acquires the mutex, ensuring that upon returning
from the function call the thread still owns the mutex.

NOTE
Threads check whether they are in the queue to make the Intel SGX condition
variable robust against attacks to the untrusted event.

A thread may have to do up to two OCALLs throughout the sgx_thread_
cond_wait function call.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_signal

The sgx_thread_cond_signal function wakes a pending thread waiting
on the condition variable.

Syntax

int sgx_thread_cond_signal(

sgx_thread_cond_t * cond
);

Parameters

cond [in]

The trusted condition variable to be signaled.

Return value

0

One pending thread is signaled.

EINVAL

The trusted condition variable is invalid.

Description

To signal a condition variable, a thread starts acquiring the condition variable
spin-lock. Then it inspects the status of the condition variable queue. If the

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 243 -

queue is empty it means that there are not any threads waiting on the con-
dition variable. When that happens, the thread releases the condition variable
and returns. However, if the queue is not empty, the thread removes the first
thread waiting in the queue. The thread then makes an OCALL to wake up the
thread that is suspended outside the enclave, but first the thread releases the
condition variable spin-lock. Upon returning from the OCALL, the thread con-
tinues normal execution.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_cond_broadcast

The sgx_thread_cond_broadcast function wakes all pending threads
waiting on the condition variable.

Syntax

int sgx_thread_cond_broadcast(

sgx_thread_cond_t * cond
);

Parameters

cond [in]

The trusted condition variable to be broadcasted.

Return value

0

All pending threads have been broadcasted.

EINVAL

The trusted condition variable is invalid.

ENOMEM

Internal memory allocation failed.

Description

Broadcast and signal operations on a condition variable are analogous. The
only difference is that during a broadcast operation, the thread removes all

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 244 -

the threads waiting on the condition variable queue and wakes up all the
threads suspended outside the enclave in a single OCALL.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_self

The sgx_thread_self function returns the unique thread identification.

Syntax

sgx_thread_t sgx_thread_self(

void
);

Return value

The return value cannot be NULL and is always valid as long as it is invoked by
a thread inside the enclave.

Description

The function is a simple wrap of get_thread_data() provided in the tRTS,
which provides a trusted thread unique identifier.

NOTE:
This identifier does not change throughout the life of an enclave.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_thread_equal

The sgx_thread_equal function compares two thread identifiers.

Syntax

int sgx_thread_equal(sgx_thread_t

sgx_thread_t t1,
sgx_thread_t t2

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 245 -

Return value

A nonzero value if the two thread IDs are equal, 0 otherwise.

Description

The function compares two thread identifiers provided by sgx_thread_
self to determine if the IDs refer to the same trusted thread.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_cpuid

The sgx_cpuid function performs the equivalent of a cpuid() function call or
intrinisic which executes the CPUID instruction to query the host processor for
the information about supported features.

NOTE:
This function performs an OCALL to execute the CPUID instruction.

Syntax

sgx_status_t sgx_cpuid(

int cpuinfo[4],
int leaf

);

Parameters

cpuinfo [in, out]

The information returned in an array of four integers. This array must be loc-
ated within the enclave.

leaf [in]

The leaf specified for retrieved CPU info.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 246 -

Indicates the parameter cpuinfo is invalid, which would be NULL or outside the
enclave.

Description

This function provides the equivalent of the cpuid() function or intrinsic. The
function executes the CPUID instruction for the given leaf (input). The CPUID
instruction provides processor feature and type information that is returned in
cpuinfo, an array of 4 integers to specify the values of EAX, EBX, ECX and EDX
registers. sgx_cpuid performs an OCALL by invoking oc_cpuidex to get the
info from untrusted side because the CPUID instruction is an illegal instruction
in the enclave domain.

For additional details, see Intel® 64 and IA-32 Architectures Software
Developer's Manual for the description on the CPUID instruction and its indi-
vidual leafs. (Leaf corresponds to EAX in the PRM description).

NOTE

1. As the CPUID instruction is executed by an OCALL, the results should not
be trusted. Code should verify the results and perform a threat eval-
uation to determine the impact on trusted code if the results were
spoofed.

2. The implementation of this function performs an OCALL and therefore,
this function will not have the same serializing or fencing behavior of
executing a CPUID instruction in an untrusted domain code flow.

Requirements

Header sgx_cpuid.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_cpuidex

The sgx_cpuidex function performs the equivalent of a cpuid_ex() func-
tion call or intrinisic which executes the CPUID instruction to query the host
processor for the information about supported features.

NOTE:
This function performs an OCALL to execute the CPUID instruction.

Syntax

sgx_status_t sgx_cpuidex(

int cpuinfo[4],

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 247 -

int leaf,
int subleaf

);

Parameters

cpuinfo [in, out]

The information returned in an array of four integers. The array must be loc-
ated within the enclave.

leaf[in]

The leaf specified for retrieved CPU info.

subleaf[in]

The sub-leaf specified for retrieved CPU info.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates the parameter cpuinfo is invalid, which would be NULL or outside the
enclave.

Description

This function provides the equivalent of the cpuid() function or intrinsic.
The function executes the CPUID instruction for the given leaf (input). The
CPUID instruction provides processor feature and type information returned
in cpuinfo, an array of 4 integers to specify the values of EAX, EBX, ECX and
EDX registers. sgx_cpuid performs an OCALL by invoking oc_cpuidex to get
the info from untrusted side because the CPUID instruction is an illegal instruc-
tion in the enclave domain.

For additional details, see Intel® 64 and IA-32 Architectures Software
Developer's Manual for the description on the CPUID instruction and its indi-
vidual leafs. (Leaf corresponds to EAX in the PRM description).

NOTE

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 248 -

1. As the CPUID instruction is executed by an OCALL, the results should not
be trusted. Code should verify the results and perform a threat eval-
uation to determine the impact on trusted code if the results were
spoofed.

2. The implementation of this function performs an OCALL and therefore,
this function will not have the same serializing or fencing behavior of
executing a CPUID instruction in an untrusted domain code flow.

Requirements

Header sgx_cpuid.h sgx_tstdc.edl
Library libsgx_tstdc.a

sgx_get_key

The sgx_get_key function generates a 128-bit secret key using the input
information. This function is a wrapper for the Intel SGX EGETKEY instruction.

Syntax

sgx_status_t sgx_get_key(

const sgx_key_request_t *key_request,
sgx_key_128bit_t *key

);

Parameters

key_request [in]

A pointer to a sgx_key_request_t object used for selecting the appropriate
key and any additional parameters required in the derivation of that key. The
pointer cannot be NULL and must be located within the enclave. See details
on the sgx_key_request_t to understand initializing this structure before call-
ing this function.

key [out]

A pointer to the buffer that receives the cryptographic key output. The
pointer cannot be NULL and must be located within enclave memory.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 249 -

Indicates an error if the parameters do not meet any of the following con-
ditions:

key_request buffer must be non-NULL and located within the enclave.

key buffer must be non-NULL and located within the enclave.

key_request and key_request->key_policy should not have any
reserved bits set.

SGX_ERROR_OUT_OF_MEMORY

Indicates an error that the enclave is out of memory.

SGX_ERROR_INVALID_ATTRIBUTE

Indicates the key_request requests a key for a KEYNAME which the enclave
is not authorized.

SGX_ERROR_INVALID_CPUSVN

Indicates key_request->cpu_svn is beyond platform CPUSVN value

SGX_ERROR_INVALID_ISVSVN

Indicates key_request->isv_svn is greater than the enclave’s ISVSVN

SGX_ERROR_INVALID_KEYNAME

Indicates key_request->key_name is an unsupported value

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the key generation process.

Description

The sgx_get_key function generates a 128-bit secret key from the pro-
cessor specific key hierarchy with the key_request information. If the func-
tion fails with an error code, the key buffer will be filled with random numbers.
The key_request structure needs to be initialized properly to obtain the
requested key type. See sgx_key_request_t for structure details.

NOTE:
It is not recommended to use this API to obtain the sealing key. Use the sgx_
seal_data, sgx_seal_data_ex, and sgx_unseal_data API instead.
The sealing key can change after the platform firmware is updated. The seal-
ing data API generates a data blob (sgx_sealed_data_t), which contains all

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 250 -

the necessary information to unseal the blob even after updating the platform
firmware. Without this information, unsealing may fail.

Requirements

Header sgx_utils.h
Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-

ulation)

sgx_create_report

Tries to use the information of the target enclave and other information to cre-
ate a cryptographic report of the enclave. This function is a wrapper for the
Intel® Software Guard Extensions (Intel® SGX) EREPORT instruction.

Syntax

sgx_status_t sgx_create_report(

const sgx_target_info_t *target_info,
const sgx_report_data_t *report_data,
sgx_report_t *report

);

Parameters

target_info [in]

Pointer to the sgx_target_info_t object that contains the information of the tar-
get enclave, which will cryptographically verify the report by calling sgx_
verify_report.

l If the pointer value is NULL, sgx_create_report retrieves inform-
ation about the calling enclave, but the generated report cannot be veri-
fied by any enclave.

l If the pointer value is not NULL, the target_info buffer must be
within the enclave.

See sgx_target_info_t for structure details.

report_data [in]

Pointer to the sgx_report_data_t object that contains a set of data used for
communication between the enclaves. This pointer is allowed to be NULL. If it
is not NULL, the report_data buffer must be within the enclave. See sgx_
report_data_t for structure details.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 251 -

report [out]

Pointer to the buffer that receives the cryptographic report of the enclave.
The pointer cannot be NULL and the report buffer must be within the enclave.
See sgx_report_t for structure details.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

An error is reported if any of the parameters are non-NULL but the memory is
not within the enclave or the reserved fields of the data structure are not set
to zero.

Description

Use the function sgx_create_report to create a cryptographic report that
describes the contents of the calling enclave. The report can be used by other
enclaves to verify that the enclave is running on the same platform. When an
enclave calls sgx_verify_report to verify a report, it succeeds only if the
report has been generated using the target_info for said enclave. This
function is a wrapper for the Intel® SGX EREPORT instruction.

Before the source enclave calls sgx_create_report to generate a report, it
needs to populate target_info with information about the target enclave
that will verify the report. The target enclave may obtain this information by
calling sgx_create_report with a NULL pointer or directly calling sgx_
self_target for target_info and pass it to the source enclave at the
beginning of the inter-enclave attestation process.

Requirements

Header sgx_utils.h
Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-

ulation)

sgx_verify_report

The sgx_verify_report function provides software verification for the
report which is expected to be generated by the sgx_create_report function.

Syntax

sgx_status_t sgx_verify_report(

const sgx_report_t * report

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 252 -

);

Parameters

report[in]

A pointer to an sgx_report_t object that contains the cryptographic report to
be verified. The pointer cannot be NULL and the report buffer must be within
the enclave.

Return value

SGX_SUCCESS

Verification success: The input report was generated using a target_info
that matches the one for the enclave making this call.

SGX_ERROR_INVALID_PARAMETER

The report object is invalid.

SGX_ERROR_MAC_MISMATCH

Indicates report verification error.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the report verification process.

Description

The sgx_verify_report performs a cryptographic CMAC function of the
input sgx_report_data_t object in the report using the report key. Then the
function compares the input report MAC value with the calculated MAC value
to determine whether the report is valid or not.

Requirements

Header sgx_utils.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_self_report

Generates a self cryptographic report of an enclave.

Syntax

const sgx_report_t *sgx_self_report(void);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 253 -

Return value

The function returns a constant pointer to the generated self cryptographic
report of an enclave. See sgx_report_t for structure details.

Description

This function returns a self cryptographic report of an enclave. On the first call,
the function calls sgx_create_report with a NULL pointer for target_
info to generate a self cryptographic report of the enclave and saves it. For
the subsequent calls, the function directly returns the generated report
pointer.

Requirements

Header sgx_utils.h
Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-

ulation)

sgx_self_target

Generates self target info from the self cryptographic report of an enclave.

Syntax

sgx_status_t sgx_self_target(

sgx_target_info_t *target_info
);

Parameters

target_info [OUT]

Pointer to the sgx_target_info_t object that receives the generated self target
info from the self report of an enclave. The target_info must be a non-
NULL pointer, and the buffer must be located within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Invalid input parameters detected.

SGX_ERROR_UNEXPECTED

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 254 -

Indicates an unexpected error occured.

Description

The function sgx_self_target generates self target info with the self cryp-
tographic report of the enclave. You can use it to get target info in the inter-
enclave attestation process.

Requirements

Header sgx_utils.h
Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-

ulation)

sgx_get_aligned_ptr

The sgx_get_aligned_ptr function returns the address within the
provided buffer. The returned address will be used as the starting address of
the structure to be aligned.

Syntax

void *sgx_get_aligned_ptr (

void *raw,
size_t raw_size,
size_t allocate_size,
size_t alignment,
align_req_t *data,
size_t count

);

Parameters

raw [in]

Pointer to the buffer allocated by the caller.

raw_size [in]

Size of the raw buffer.

allocate_size [in]

Size of the structure to be aligned.

alignment [in]

Desired, traditional alignment of the structure. Must be power of 2.

data [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 255 -

(offset, length) pairs to define the fields in the structure that needs con-
fidentiality protection. If data is NULL and count is 0, the whole structure is
treated as needing confidentiality protection.

count [in]

Number of align_req_t structures in the data.

Return value

Address within the provided buffer where structure to be aligned must start
or NULL, including the case when the strucutre cannot be aligned.

Description

The sgx_get_aligned_ptr function faciliates alignment of the structure
that contains secrets. The function returns the address within the provided
raw buffer to be used as the start address of the structure on a specific bound-
ary. If the structure cannot be aligned, the function returns NULL.

If the whole structure cannot be aligned, you can use align_req_t structure to
define part of the secrets in the structure to be protected.

The raw buffer is defined/allocated by the caller. In general, its size (specified
by the raw_size parameter) must be bigger than the structure being aligned.
The delta between the raw buffer size and the structure size depends on
value of the desired, traditional alignment. Raw_size >= sizeof(structure) + 64
+ A, where A = max((desired, traditional alignment), 8)

.

Requirements

Header sgx_secure_align_api.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_aligned_malloc

The sgx_aligned_malloc function allocates memory for a structure on a
specified alignment boundary and returns the address where structure must
start in order to be aligned.

Syntax

void *sgx_aligned_malloc (

size_t size,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 256 -

size_t alignment,
align_req_t *data,
size_t count

);

Parameters

size [in]

Size of the structure to be aligned.

alignment [in]

Desired, traditional alignment of the structure. Must be power of 2.

data [in]

(offset, length) pairs to define the fields in the structure that needs con-
fidentiality protection. If the data is NULL and count is 0, the whole structure is
treated as needing confidentiality protection.

count [in]

Number of align_req_t structures in the data.

Return value

Pointer to the memory block that is allocated or NULL if the operation failed,
including the case when the structure cannot be aligned.

Description

The sgx_aligned_malloc function allocates memory for the structure that
contains secrets on a specified alignment boundary. If the structure cannot be
aligned, the function returns NULL.

If the whole structure cannot be aligned, you can use the align_req_t structure
to define part of the secrets in the structure to be protected.

The pointer allocated by sgx_aligned_malloc must be released by sgx_
aligned_free.

Requirements

Header sgx_secure_align_api.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 257 -

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_aligned_free

The sgx_aligned_free function frees a block of memory allocated by
sgx_aligned_malloc.

Syntax

void *sgx_aligned_free (

void *size,
size_t alignment,
align_req_t *data,
size_t count

);

Parameters

ptr [in]

Pointer to the memory block that has been returned to sgx_aligned_mal-
loc.

Description

The sgx_aligned_free function frees the memory allocated by sgx_
aligned_malloc. It does not check the input parameter. If the input pointer
has not been previously allocated by sgx_aligned_malloc, the result is
unpredictable.

Requirements

Header sgx_secure_align_api.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 258 -

sgx_calc_sealed_data_size

The sgx_calc_sealed_data_size function is a helper function for the
seal library which should be used to determine how much memory to allocate
for the sgx_sealed_data_t structure.

Syntax

uint32_t sgx_calc_sealed_data_size(

const uint32_t add_mac_txt_size,
const uint32_t txt_encrypt_size

);

Parameters

add_mac_txt_size [in]

Length of the optional additional data stream in bytes. The additional data will
not be encrypted, but will be part of the MAC calculation.

txt_encrypt_size [in]

Length of the data stream to be encrypted in bytes. This data will also be part
of the MAC calculation.

Return value

If the function succeeds, the return value is the minimum number of bytes that
need to be allocated for the sgx_sealed_data_t structure. If the function fails,
the return value is 0xFFFFFFFF. It is recommended that you check the return
value before use it to allocate memory.

Description

The function calculates the number of bytes to allocate for the sgx_sealed_
data_t structure. The calculation includes the fixed portions of the structure as
well as the two input data streams: encrypted text and optional additional
MAC text.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 259 -

sgx_get_add_mac_txt_len

The sgx_get_add_mac_txt_len function is a helper function for the seal
library which should be used to determine how much memory to allocate for
the additional_MAC_text buffer output from the sgx_unseal_data func-
tion.

Syntax

uint32_t sgx_get_add_mac_txt_len(

const sgx_sealed_data_t *p_sealed_data
);

Parameters

p_sealed_data [in]

Pointer to the sealed data structure which was populated by the sgx_seal_
data function.

Return value

If the function succeeds, the number of bytes in the optional additional MAC
data buffer is returned. If this function fails, the return value is 0xFFFFFFFF. It
is recommended that you check the return value before use it to allocate
memory.

Description

The function calculates the minimum number of bytes to allocate for the out-
put MAC data buffer returned by the sgx_unseal_data function.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_get_encrypt_txt_len

The sgx_get_encrypt_txt_len function is a helper function for the seal
library which should be used to calculate the minimum number of bytes to
allocate for decrypted data returned by the sgx_unseal_data function.

Syntax

uint32_t sgx_get_encrypt_txt_len(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 260 -

const sgx_sealed_data_t *p_sealed_data
);

Parameters

p_sealed_data [in]

Pointer to the sealed data structure which was populated during by the sgx_
seal_data function.

Return value

If the function succeeds, the number of bytes in the encrypted data buffer is
returned. Othewise, the return value is 0xFFFFFFFF. It is recommended that
you check the return value before use it to allocate memory.

Description

The function calculates the minimum number of bytes to allocate for decryp-
ted data returned by the sgx_unseal_data function.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_seal_data

This function is used to AES-GCM encrypt the input data. Two input data sets
are provided: one is the data to be encrypted; the second is optional addi-
tional data that will not be encrypted but will be part of the GCM MAC cal-
culation which also covers the data to be encrypted.

Syntax

sgx_status_t sgx_seal_data(

const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t text2encrypt_length,
const uint8_t * p_text2encrypt,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 261 -

additional_MACtext_length [in]

Length of the additional Message Authentication Code (MAC) data in bytes.
The additional data is optional and thus the length can be zero if no data is
provided.

p_addtional_MACtext [in]

Pointer to the additional Message Authentication Code (MAC) data. This addi-
tional data is optional and no data is necessary (NULL pointer can be passed,
but additional_MACtext_length must be zero in this case).

NOTE:
This data will not be encrypted. This data can be within or outside the enclave,
but cannot cross the enclave boundary.

text2encrypt_length [in]

Length of the data stream to be encrypted in bytes. Must be non-zero.

p_text2encrypt [in]

Pointer to the data stream to be encrypted. Must not be NULL. Must be within
the enclave.

sealed_data_size [in]

Number of bytes allocated for the sgx_sealed_data_t structure. The calling
code should utilize helper function sgx_calc_sealed_data_size to
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer to store the sealed data.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
helper function sgx_calc_sealed_data_size to determine the required
buffer size. The sealed data must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 262 -

Indicates an error if the parameters do not meet any of the following con-
ditions:

l If additional_MACtext_length is non-zero, p_additional_MAC-
text cannot be NULL.

l p_additional_MACtext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

l p_text2encrypt must be non-zero.

l p_text2encrypt buffer must be within the enclave.

l sealed_data_size must be equal to the required buffer size, which
is calculated by the function sgx_calc_sealed_data_size.

l p_sealed_data buffer must be within the enclave.

l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx_seal_data function retrieves a key unique to the enclave and uses
that key to encrypt the input data buffer. This function can be utilized to pre-
serve secret data after the enclave is destroyed. The sealed data blob can be
unsealed on future instantiations of the enclave.

The additional data buffer will not be encrypted but will be part of the MAC
calculation that covers the encrypted data as well. This data may include
information about the application, version, data, etc which can be utilized to
identify the sealed data blob since it will remain plain text

Use sgx_calc_sealed_data_size to calculate the number of bytes to
allocate for the sgx_sealed_data_t structure. The input sealed data buffer and
text2encrypt buffers must be allocated within the enclave.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 263 -

sgx_seal_data_ex

This function is used to AES-GCM encrypt the input data. Two input data sets
are provided: one is the data to be encrypted; the second is optional addi-
tional data that will not be encrypted but will be part of the GCM MAC cal-
culation which also covers the data to be encrypted. This is the expert mode
version of function sgx_seal_data.

Syntax

sgx_status_t sgx_seal_data_ex(

const uint16_t key_policy,
const sgx_attributes_t attribute_mask,
const sgx_misc_select_t misc_mask,
const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t text2encrypt_length,
const uint8_t * p_text2encrypt,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

key_policy [in]

Specifies the policy to use in the key derivation. Function sgx_seal_data
uses the MRSIGNER policy.

Key policy name Value Description is detailed in sgx_key_request_t.

attribute_mask [in]

Identifies which platform/enclave attributes to use in the key derivation. See
the definition of sgx_attributes_t to determine which attributes will be
checked. Function sgx_seal_data uses flags=0xFF0000000000000B,
xfrm=0.

misc_mask [in]

Identifies the mask bits for the Misc feature to enforce. Function sgx_seal_data
uses 0xF0000000.The misc mask bits for the enclave. Reserved for future
function extension.

additional_MACtext_length [in]

Length of the additional data to be MAC’ed in bytes. The additional data is
optional and thus the length can be zero if no data is provided.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 264 -

p_addtional_MACtext [in]

Pointer to the additional data to be MAC’ed of variable length. This additional
data is optional and no data is necessary (NULL pointer can be passed, but
additional_MACtext_length must be zero in this case).

NOTE:
This data will not be encrypted. This data can be within or outside the enclave,
but cannot cross the enclave boundary.

text2encrypt_length [in]

Length of the data stream to be encrypted in bytes. Must be non-zero.

p_text2encrypt [in]

Pointer to the data stream to be encrypted of variable length. Must not be
NULL. Must be within the enclave.

sealed_data_size [in]

Number of bytes allocated for sealed_data_t structure. The calling code
should utilize helper function sgx_calc_sealed_data_size to determine
the required buffer size.

p_sealed_data [out]

Pointer to the buffer that is populated by this function.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
helper function sgx_calc_sealed_data_size to determine the required
buffer size. The sealed data must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l If additional_MACtext_length is non-zero, p_additional_
MACtext cannot be NULL.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 265 -

l p_additional_MACtext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

l p_text2encrypt must be non-zero.

l p_text2encrypt buffer must be within the enclave.

l sealed_data_size must be equal to the required buffer size, which
is calculated by the function sgx_calc_sealed_data_size.

l p_sealed_data buffer must be within the enclave.

l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx_seal_data_ex is an extended version of sgx_seal_data. It
provides parameters for you to identify how to derive the sealing key (key
policy and attributes_mask). Typical callers of the seal library should be
able to use sgx_seal_data and the default values provided for key_
policy (MR_SIGNER) and an attribute mask which includes the RESERVED,
INITED and DEBUG bits. Users of this function should have a clear under-
standing of the impact on using a policy and/or attribute_mask that is dif-
ferent from that in sgx_seal_data.

Requirement

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_unseal_data

This function is used to AES-GCM decrypt the input sealed data structure.
Two output data sets result: one is the decrypted data; the second is the
optional additional data that was part of the GCM MAC calculation but was not
encrypted. This function provides the converse of sgx_seal_data and
sgx_seal_data_ex.

Syntax

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 266 -

sgx_status_t sgx_unseal_data(

const sgx_sealed_data_t * p_sealed_data,
uint8_t * p_additional_MACtext,
uint32_t * p_additional_MACtext_length,
uint8_t * p_decrypted_text,
uint32_t * p_decrypted_text_length

);

Parameters

p_sealed_data [in]

Pointer to the sealed data buffer to be AES-GCM decrypted. Must be within
the enclave.

p_addtional_MACtext [out]

Pointer to the additional data part of the MAC calculation. This additional data
is optional and no data is necessary. The calling code should call helper func-
tion sgx_get_add_mac_txt_len to determine the required buffer size to
allocate. (NULL pointer can be passed, if additional_MACtext_length is
zero).

p_additional_MACtext_length [in, out]

Pointer to the length of the additional MAC data buffer in bytes. The calling
code should call helper function sgx_get_add_mac_txt_len to determine
the minimum required buffer size. The sgx_unseal_data function returns
the actual length of decrypted addition data stream.

p_decrypted_text [out]

Pointer to the decrypted data buffer which needs to be allocated by the call-
ing code. Use sgx_get_encrypt_txt_len to calculate the minimum num-
ber of bytes to allocate for the p_decrypted_text buffer. Must be
within the enclave.

p_decrypted_text_length [in, out]

Pointer to the length of the decrypted data buffer in byte. The buffer length
of p_decrypted_text must be specified in p_decrypted_text_length as
input. The sgx_unseal_data function returns the actual length of decryp-
ted addition data stream. Use sgx_get_encrypt_txt_len to calculate the
number of bytes to allocate for the p_decrypted_text buffer. Must be
within the enclave.

Return value

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 267 -

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l If additional_mactext_length is non-zero, p_additional_mac-
text cannot be NULL.

l p_additional_mactext buffer can be within or outside the enclave,
but cannot across the enclave boundary.

l p_decrypted_text and p_decrypted_text_length must be
within the enclave.

l p_decrypted_text and p_addtitional_MACtext buffer must be
big enough to receive the decrypted data.

l p_sealed_data buffer must be within the enclave.

l Input buffers cannot cross an enclave boundary.

SGX_ERROR_INVALID_CPUSVN

The CPUSVN in the sealed data blob is beyond the CPUSVN value of the plat-
form.

SGX_ERROR_INVALID_ISVSVN

The ISVSVN in the sealed data blob is greater than the ISVSVN value of the
enclave.

SGX_ERROR_MAC_MISMATCH

The tag verification failed during unsealing. The error may be caused by a plat-
form update, software update, or sealed data blob corruption. This error is
also reported if other corruption of the sealed data structure is detected.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a cryptography library failure.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 268 -

The sgx_unseal_data function AES-GCM decrypts the sealed data so that
the enclave data can be restored. This function can be utilized to restore
secret data that was preserved after an earlier instantiation of this enclave
saved this data.

The calling code needs to allocate the additional data buffer and the decryp-
ted data buffer. To determine the minimum memory to allocate for these buf-
fers, helper functions sgx_get_add_mac_txt_len and sgx_get_
encrypt_txt_len are provided. The decrypted text buffer must be alloc-
ated within the enclave.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_mac_aadata

This function is used to authenticate the input data with AES-GMAC.

Syntax

sgx_status_t sgx_mac_aadata(

const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

additional_MACtext_length [in]

Length of the plain text to provide authentication for in bytes.

p_addtional_MACtext [in]

Pointer to the plain text to provide authentication for.

NOTE:
This data is not encrypted. This data can be within or outside the enclave, but
cannot cross the enclave boundary.

sealed_data_size [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 269 -

Number of bytes allocated for the sealed_data_t structure. The calling
code should utilize the helper function sgx_calc_sealed_data_size to
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer to store the sealed_data_t structure.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
the helper function sgx_calc_sealed_data_size with 0 as the txt_
encrypt_size to determine the required buffer size. The sealed_data_t
structure must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l p_additional_mactext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

l sealed_data_size must be equal to the required buffer size, which
is calculated by the function sgx_calc_sealed_data_size.

l p_sealed_data buffer must be within the enclave.

l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a crypto library failure, or the RDRAND instruction fails to generate a
random number.

Description

The sgx_mac_aadata function retrieves a key unique to the enclave and
uses that key to generate the authentication tag based on the input data buf-
fer. This function can be utilized to provide authentication assurance for addi-
tional data (of practically unlimited length per invocation) that is not

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 270 -

encrypted. The data origin authentication can be demonstrated on future
instantiations of the enclave using the MAC stored into the data blob.

Use sgx_calc_sealed_data_size to calculate the number of bytes to
allocate for the sgx_sealed_data_t structure. The input sealed data buffer
must be allocated within the enclave.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_mac_aadata_ex

This function is used to authenticate the input data with AES-GMAC. This is
the expert mode version of the function sgx_mac_aadata.

Syntax

sgx_status_t sgx_mac_aadata_ex(

const uint16_t key_policy,
const sgx_attributes_t attribute_mask,
const sgx_misc_select_t misc_mask,
const uint32_t additional_MACtext_length,
const uint8_t * p_additional_MACtext,
const uint32_t sealed_data_size,
sgx_sealed_data_t * p_sealed_data

);

Parameters

key_policy [in]

Specifies the policy to use in the key derivation. Key policy name Value
Description is detailed in sgx_key_request_t. Function sgx_mac_aadata
uses the MRSIGNER policy.

attribute_mask [in]

Identifies which platform/enclave attributes to use in the key derivation. See
the definition of sgx_attributes_t to determine which attributes will be
checked. Function sgx_mac_aadata uses flag-
s=0xfffffffffffffff3, xfrm=0.

misc_mask [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 271 -

The MISC_SELECT mask bits for the enclave. Reserved for future function
extension.

additional_MACtext_length [in]

Length of the plain text data stream to be MAC’ed in bytes.

p_addtional_MACtext [in]

Pointer to the plain text data stream to be MAC’ed of variable length.

NOTE:
This data is not encrypted. This data can be within or outside the enclave, but
cannot cross the enclave boundary.

sealed_data_size [in]

Number of bytes allocated for the sealed_data_t structure. The calling
code should utilize the helper function sgx_calc_sealed_data_size to
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer that is populated by this function.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
the helper function sgx_calc_sealed_data_size with 0 as the txt_
encrypt_size to determine the required buffer size. The sealed_data_t
structure must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

l p_additional_mactext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

l sealed_data_size must be equal to the required buffer size, which
is calculated by the function sgx_calc_sealed_data_size.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 272 -

l p_sealed_data buffer must be within the enclave.

l Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx_mac_aadata_ex is an extended version of sgx_mac_aadata. It
provides parameters for you to identify how to derive the sealing key (key
policy and attributes_mask). Typical callers of the seal library should be
able to use sgx_mac_aadata and the default values provided for key_
policy (MR_SIGNER) and an attribute mask which includes the RESERVED,
INITED and DEBUG bits. Before you use this function, you should have a clear
understanding of the impact of using a policy and/or attribute_mask that
is different from that in sgx_mac_aadata.

Requirement

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_unmac_aadata

This function is used to verify the authenticity of the input sealed data struc-
ture using AES-GMAC. This function verifies the MAC generated with sgx_
mac_aadataorsgx_mac_aadata_ex.

Syntax

sgx_status_t sgx_unmac_aadata(

const sgx_sealed_data_t * p_sealed_data,
uint8_t * p_additional_MACtext,
uint32_t * p_additional_MACtext_length,

);

Parameters

p_sealed_data [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 273 -

Pointer to the sealed data structure to be authenticated with AES-GMAC. Must
be within the enclave.

p_addtional_MACtext [out]

Pointer to the plain text data stream that was AES-GMAC protected. You
should call the helper function sgx_get_add_mac_txt_len to determine
the required buffer size to allocate.

p_additional_MACtext_length [in, out]

Pointer to the length of the plain text data stream in bytes. Upon successful
tag matching,sgx_unmac_datasets this parameter with the actual length of
the plaintext stored in p_additional_MACtext.

Return value

SGX_SUCCESS

The authentication tag in the sealed_data_t structure matches the expec-
ted value.

SGX_ERROR_INVALID_PARAMETER

This parameter indicates an error if the parameters do not meet any of the fol-
lowing conditions:

l p_additional_MACtext buffers can be within or outside the enclave,
but cannot cross the enclave boundary.

l p_addtitional_MACtext buffers must be big enough to receive the
plain text data.

l p_sealed_data buffers must be within the enclave.

l Input buffers cannot cross an enclave boundary.

SGX_ERROR_INVALID_CPUSVN

The CPUSVN in the data blob is beyond the CPUSVN value of the platform.

SGX_ERROR_INVALID_ISVSVN

The ISVSVN in the data blob is greater than the ISVSVN value of the enclave.

SGX_ERROR_MAC_MISMATCH

The tag verification fails. The error may be caused by a platform update, soft-
ware update, or corruption of the sealed_data_t structure.

SGX_ERROR_OUT_OF_MEMORY

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 274 -

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

Indicates a cryptography library failure.

Description

The sgx_unmac_aadata function verifies the tag with AES-GMAC. Use this
function to demonstrate the authenticity of data that was preserved by an
earlier instantiation of this enclave.

You need to allocate additional data buffer. To determine the minimum
memory to allocate for additional data buffers, use the helper function sgx_
get_add_mac_txt_len.

Requirements

Header sgx_tseal.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_sha256_msg

The sgx_sha256_msg function performs a standard SHA256 hash over the
input data buffer.

Syntax

sgx_status_t sgx_sha256_msg(

const uint8_t *p_src,
uint32_t src_len,
sgx_sha256_hash_t *p_hash

);

Parameters

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_hash [out]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 275 -

A pointer to the output 256bit hash resulting from the SHA256 calculation.
This pointer must be non-NULL and the caller allocates memory for this buffer.

Return value

SGX_SUCCESS

The SHA256 hash function is performed successfully.

SGX_ERROR_INVALID_PARAMETER

Input pointers are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The SHA256 hash calculation failed.

Description

The sgx_sha256_msg function performs a standard SHA256 hash over the
input data buffer. Only a 256-bit version of the SHA hash is supported. (Other
sizes, for example 512, are not supported in this minimal cryptography lib-
rary).

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update… Update, Final procedure should be used to com-
pute a SHA256 bit hash over multiple input data sets.

A zero-length input data buffer is supported but the pointer must be non-
NULL.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha256_init

sgx_sha256_init returns an allocated and initialized SHA algorithm con-
text state. This should be part of the Init, Update … Update, Final process
when the SHA hash is to be performed over multiple datasets. If a complete

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 276 -

dataset is available, the recommend call is sgx_sha256_msg to perform the
hash in a single call.

Syntax

sgx_status_t sgx_sha256_init(

sgx_sha_state_handle_t* p_sha_handle
);

Parameters

p_sha_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA256 state is allocated and initialized properly.

SGX_ERROR_INVALID_PARAMETER

The pointer p_sha_handle is invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The SHA256 state is not initialized properly due to an internal cryptography
library failure.

Description

Calling sgx_sha256_init is the first set in performing a SHA256 hash over
multiple datasets. The caller does not allocate memory for the SHA256 state
that this function returns. The state is specific to the implementation of the
cryptography library; thus the allocation is performed by the library itself. If
the hash over the desired datasets is completed or any error occurs during
the hash calculation process, sgx_sha256_close should be called to free
the state allocated by this algorithm.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 277 -

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha256_update

sgx_sha256_update performs a SHA256 hash over the input dataset
provided. This function supports an iterative calculation of the hash over mul-
tiple datasets where the sha_handle contains the intermediate results of the
hash calculation over previous datasets.

Syntax

sgx_status_t sgx_sha256_update(

const uint8_t *p_src,
uint32_t src_len,
sgx_sha_state_handle_t sha_handle

);

Parameters

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 278 -

The input parameter(s) are NULL.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred while performing the
SHA256 hash calculation.

Description

This function should be used as part of a SHA256 calculation over multiple
datasets. If a SHA256 hash is needed over a single data set, function sgx_
sha256_msg should be used instead. Prior to calling this function on the first
dataset, the sgx_sha256_init function must be called first to allocate and ini-
tialize the SHA256 state structure which will hold intermediate hash results
over earlier datasets. The function sgx_sha256_get_hash should be used
to obtain the hash after the final dataset has been processed by this function.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha256_get_hash

sgx_sha256_get_hash obtains the SHA256 hash after the final dataset has
been processed (by calls to sgx_sha256_update).

Syntax

sgx_status_t sgx_sha256_get_hash(

sgx_sha_state_handle_t sha_handle,
sgx_sha256_hash_t* p_hash

);

Parameters

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple datasets.

p_hash [out]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 279 -

This is a pointer to the 256-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Return value

SGX_SUCCESS

The hash is obtained successfully.

SGX_ERROR_INVALID_PARAMETER

The pointers are NULL.

SGX_ERROR_UNEXPECTED

The SHA256 state passed in is likely problematic causing an internal cryp-
tography library failure.

Description

This function returns the hash after performing the SHA256 calculation over
one or more datasets using the sgx_sha256_update function. Memory for
the hash should be allocated by the calling function. The handle to SHA256
state used in the sgx_sha256_update calls must be passed in as input.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha256_close

sgx_sha256_close cleans up and deallocates the SHA256 state that was
allocated in function sgx_sha256_init.

Syntax

sgx_status_t sgx_sha256_close(

sgx_sha_state_handle_t sha_handle
);

Parameters

sha_handle [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 280 -

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA256 state was deallocated successfully.

SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

Calling sgx_sha256_close is the last step after performing a SHA256 hash
over multiple datasets. The caller uses this function to deallocate memory
used to store the SHA256 calculation state.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha384_msg

The sgx_sha384_msg function performs a standard SHA384 hash over the
input data buffer.

Syntax

sgx_status_t sgx_sha384_msg(

const uint8_t *p_src,
uint32_t src_len,
sgx_sha384_hash_t *p_hash

);

Parameters

p_src [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 281 -

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_hash [out]

A pointer to the output 384bit hash resulting from the SHA384 calculation.
This pointer must be non-NULL and the caller allocates memory for this buffer.

Return value

SGX_SUCCESS

The SHA384 hash function is performed successfully.

SGX_ERROR_INVALID_PARAMETER

Input pointers are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The SHA384 hash calculation failed.

Description

The sgx_sha384_msg function performs a standard SHA384 hash over the
input data buffer. Only a 384-bit version of the SHA hash is supported. (Other
sizes, for example 512, are not supported in this minimal cryptography lib-
rary).

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update… Update, Final procedure should be used to com-
pute a SHA384 bit hash over multiple input data sets.

A zero-length input data buffer is supported but the pointer must be non-
NULL.

Requirements

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 282 -

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha384_init

sgx_sha384_init returns an allocated and initialized SHA algorithm con-
text state. This should be part of the Init, Update … Update, Final process
when the SHA hash is to be performed over multiple datasets. If a complete
dataset is available, the recommend call is sgx_sha384_msg to perform the
hash in a single call.

Syntax

sgx_status_t sgx_sha384_init(

sgx_sha_state_handle_t* p_sha_handle
);

Parameters

p_sha_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA384 state is allocated and initialized properly.

SGX_ERROR_INVALID_PARAMETER

The pointer p_sha_handle is invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The SHA384 state is not initialized properly due to an internal cryptography
library failure.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 283 -

Calling sgx_sha384_init is the first set in performing a SHA384 hash over
multiple datasets. The caller does not allocate memory for the SHA384 state
that this function returns. The state is specific to the implementation of the
cryptography library; thus the allocation is performed by the library itself. If
the hash over the desired datasets is completed or any error occurs during
the hash calculation process, sgx_sha384_close should be called to free
the state allocated by this algorithm.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha384_update

sgx_sha384_update performs a SHA384 hash over the input dataset
provided. This function supports an iterative calculation of the hash over mul-
tiple datasets where the sha_handle contains the intermediate results of the
hash calculation over previous datasets.

Syntax

sgx_status_t sgx_sha384_update(

const uint8_t *p_src,
uint32_t src_len,
sgx_sha_state_handle_t sha_handle

);

Parameters

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

sha_handle [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 284 -

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The input parameter(s) are NULL.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred while performing the
SHA384 hash calculation.

Description

This function should be used as part of a SHA384 calculation over multiple
datasets. If a SHA384 hash is needed over a single data set, function sgx_
sha384_msg should be used instead. Prior to calling this function on the first
dataset, the sgx_sha384_init function must be called first to allocate and ini-
tialize the SHA384 state structure which will hold intermediate hash results
over earlier datasets. The function sgx_sha384_get_hash should be used
to obtain the hash after the final dataset has been processed by this function.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_sha384_get_hash

sgx_sha384_get_hash obtains the SHA384 hash after the final dataset has
been processed (by calls to sgx_sha384_update).

Syntax

sgx_status_t sgx_sha384_get_hash(

sgx_sha_state_handle_t sha_handle,
sgx_sha384_hash_t* p_hash

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 285 -

);

Parameters

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple datasets.

p_hash [out]

This is a pointer to the 384-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Return value

SGX_SUCCESS

The hash is obtained successfully.

SGX_ERROR_INVALID_PARAMETER

The pointers are NULL.

SGX_ERROR_UNEXPECTED

The SHA384 state passed in is likely problematic causing an internal cryp-
tography library failure.

Description

This function returns the hash after performing the SHA384 calculation over
one or more datasets using the sgx_sha384_update function. Memory for
the hash should be allocated by the calling function. The handle to SHA384
state used in the sgx_sha384_update calls must be passed in as input.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 286 -

sgx_sha384_close

sgx_sha384_close cleans up and deallocates the SHA384 state that was
allocated in function sgx_sha384_init.

Syntax

sgx_status_t sgx_sha384_close(

sgx_sha_state_handle_t sha_handle
);

Parameters

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA384 state was deallocated successfully.

SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

Calling sgx_sha384_close is the last step after performing a SHA384 hash
over multiple datasets. The caller uses this function to deallocate memory
used to store the SHA384 calculation state.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 287 -

sgx_rijndael128GCM_encrypt

sgx_rijndael128GCM_encrypt performs a Rijndael AES-GCM encryption
operation. Only a 128bit key size is supported by this Intel® SGX SDK cryp-
tography library.

Syntax

sgx_status_t sgx_rijndael128GCM_encrypt(

const sgx_aes_gcm_128bit_key_t *p_key,
const uint8_t *p_src,
uint32_t src_len,
uint8_t *p_dst,
const uint8_t *p_iv,
uint32_t iv_len,
const uint8_t *p_aad,
uint32_t aad_len,
sgx_aes_gcm_128bit_tag_t *p_out_mac

);

Parameters

p_key [in]

A pointer to key to be used in the AES-GCM encryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be encrypted. Buffer could be NULL if
there is AAD text.

src_len [in]

Specifies the length on the input data stream to be encrypted. This could be
zero but p_src and p_dst should be NULL and aad_len must be greater
than zero.

p_dst [out]

A pointer to the output encrypted data buffer. This buffer should be allocated
by the calling code.

p_iv [in]

A pointer to the initialization vector to be used in the AES-GCM calculation.
NIST AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 288 -

Specifies the length on input initialization vector. The length should be 12 as
recommended by NIST.

p_aad [in]

A pointer to an optional additional authentication data buffer which is used in
the GCM MAC calculation. The data in this buffer will not be encrypted. The
field is optional and could be NULL.

aad_len [in]

Specifies the length of the additional authentication data buffer. This buffer is
optional and thus the size can be zero.

p_out_mac [out]

This is the output GCM MAC performed over the input data buffer (data to be
encrypted) as well as the additional authentication data (this is optional data).
The calling code should allocate this buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If key, MAC, or IV pointer is NULL.

If AAD size is > 0 and the AAD pointer is NULL.

If source size is > 0 and the source pointer or destination pointer are NULL.

If both source pointer and AAD pointer are NULL.

If IV Length is not equal to 12 (bytes).

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

The Galois/Counter Mode (GCM) is a mode of operation of the AES algorithm.
GCM [NIST SP 800-38D] uses a variation of the counter mode of operation for
encryption. GCM assures authenticity of the confidential data (of up to about

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 289 -

64 GB per invocation) using a universal hash function defined over a binary
finite field (the Galois field).

GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM provides
stronger authentication assurance than a (non-cryptographic) checksum or
error detecting code. In particular, GCM can detect both accidental modi-
fications of the data and intentional, unauthorized modifications.

It is recommended that the source and destination data buffers are allocated
within the enclave. The AAD buffer could be allocated within or outside
enclave memory. The use of AAD data buffer could be information identifying
the encrypted data since it will remain in clear text.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_rijndael128GCM_decrypt

sgx_rijndael128GCM_decrypt performs a Rijndael AES-GCM decryption
operation. Only a 128bit key size is supported by this Intel® SGX SDK cryp-
tography library.

Syntax

sgx_status_t sgx_rijndael128GCM_decrypt(

const sgx_aes_gcm_128bit_key_t *p_key,
const uint8_t *p_src,
uint32_t src_len,
uint8_t *p_dst,
const uint8_t *p_iv,
uint32_t iv_len,
const uint8_t *p_aad,
uint32_t aad_len,
const sgx_aes_gcm_128bit_tag_t *p_in_mac

);

Parameters

p_key [in]

A pointer to key to be used in the AES-GCM decryption operation. The size
must be 128 bits.

p_src [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 290 -

A pointer to the input data stream to be decrypted. Buffer could be NULL if
there is AAD text.

src_len [in]

Specifies the length on the input data stream to be decrypted. This could be
zero but p_src and p_dst should be NULL and aad_len must be greater
than zero.

p_dst [out]

A pointer to the output decrypted data buffer. This buffer should be allocated
by the calling code.

p_iv [in]

A pointer to the initialization vector to be used in the AES-GCM calculation.
NIST AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

Specifies the length on input initialization vector. The length should be 12 as
recommended by NIST.

p_aad [in]

A pointer to an optional additional authentication data buffer which is
provided for the GCM MAC calculation when encrypting. The data in this buf-
fer was not encrypted. The field is optional and could be NULL.

aad_len [in]

Specifies the length of the additional authentication data buffer. This buffer is
optional and thus the size can be zero.

p_in_mac [in]

This is the GCM MAC that was performed over the input data buffer (data to
be encrypted) as well as the additional authentication data (this is optional
data) during the encryption process (call to sgx_rijndael128GCM_
encrypt).

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 291 -

If key, MAC, or IV pointer is NULL.

If AAD size is > 0 and the AAD pointer is NULL.

If source size is > 0 and the source pointer or destination pointer are NULL.

If both source pointer and AAD pointer are NULL.

If IV Length is not equal to 12 (bytes).

SGX_ERROR_MAC_MISMATCH

The input MAC does not match the MAC calculated.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

The Galois/Counter Mode (GCM) is a mode of operation of the AES algorithm.
GCM [NIST SP 800-38D] uses a variation of the counter mode of operation for
encryption. GCM assures authenticity of the confidential data (of up to about
64 GB per invocation) using a universal hash function defined over a binary
finite field (the Galois field).

GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM provides
stronger authentication assurance than a (non-cryptographic) checksum or
error detecting code. In particular, GCM can detect both accidental modi-
fications of the data and intentional, unauthorized modifications.

It is recommended that the destination data buffer is allocated within the
enclave. The AAD buffer could be allocated within or outside enclave memory.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 292 -

sgx_rijndael128_cmac_msg

The sgx_rijndael128_cmac_msg function performs a standard 128bit
CMAC hash over the input data buffer.

Syntax

sgx_status_t sgx_rijndael128_cmac_msg(

const sgx_cmac_128bit_key_t *p_key,
const uint8_t *p_src,
uint32_t src_len,
sgx_cmac_128bit_tag_t *p_mac

);

Parameters

p_key [in]

A pointer to key to be used in the CMAC hash operation. The size must be 128
bits.

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_mac [out]

A pointer to the output 128-bit hash resulting from the CMAC calculation. This
pointer must be non-NULL and the caller allocates memory for this buffer.

Return value

SGX_SUCCESS

The CMAC hash function is performed successfully.

SGX_ERROR_INVALID_PARAMETER

The key, source or MAC pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 293 -

SGX_ERROR_UNEXPECTED

An unexpected internal cryptography library.

Description

The sgx_rijndael128_cmac_msg function performs a standard CMAC
hash over the input data buffer. Only a 128-bit version of the CMAC hash is
supported.

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update… Update, Final procedure should be used to com-
pute a CMAC hash over multiple input data sets.

A zero-length input data buffer is supported, but the pointer must be non-
NULL.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_cmac128_init

sgx_cmac128_init returns an allocated and initialized CMAC algorithm con-
text state. This should be part of the Init, Update … Update, Final process
when the CMAC hash is to be performed over multiple datasets. If a complete
dataset is available, the recommended call is sgx_rijndael128_cmac_
msg to perform the hash in a single call.

Syntax

sgx_status_t sgx_cmac128_init(

const sgx_cmac_128bit_key_t *p_key,
sgx_cmac_state_handle_t* p_cmac_handle

);

Parameters

p_key [in]

A pointer to key to be used in the CMAC hash operation. The size must be 128
bits.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 294 -

p_cmac_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC 128-bit hash. The algorithm stores the intermediate
results of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The CMAC hash state is successfully allocated and initialized.

SGX_ERROR_INVALID_PARAMETER

The key or handle pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

Calling sgx_cmac128_init is the first set in performing a CMAC 128-bit
hash over multiple datasets. The caller does not allocate memory for the
CMAC state that this function returns. The state is specific to the imple-
mentation of the cryptography library and thus the allocation is performed by
the library itself. If the hash over the desired datasets is completed or any
error occurs during the hash calculation process, sgx_cmac128_close should
be called to free the state allocated by this algorithm.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_cmac128_update

sgx_cmac128_update performs a CMAC 128-bit hash over the input data-
set provided. This function supports an iterative calculation of the hash over

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 295 -

multiple datasets where the cmac_handle contains the intermediate results of
the hash calculation over previous datasets.

Syntax

sgx_status_t sgx_cmac128_update(

const uint8_t *p_src,
uint32_t src_len,
sgx_cmac_state_handle_t cmac_handle

);

Parameters

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The source pointer or cmac handle is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred while performing the CMAC
hash calculation.

NOTE:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 296 -

If an unexpected error occurs, then the CMAC state is not freed (CMAC
handle). In this case, call sgx_cmac128_close to free the CMAC state to
avoid memory leak.

Description

This function should be used as part of a CMAC 128-bit hash calculation over
multiple datasets. If a CMAC hash is needed over a single data set, function
sgx_rijndael128_cmac128_msg should be used instead. Prior to calling
this function on the first dataset, the sgx_cmac128_init function must be
called first to allocate and initialize the CMAC state structure which will hold
intermediate hash results over earlier datasets. The function sgx_cmac128_
final should be used to obtain the hash after the final dataset has been pro-
cessed by this function.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_cmac128_final

sgx_cmac128_final obtains the CMAC 128-bit hash after the final dataset
has been processed (by calls to sgx_cmac128_update).

Syntax

sgx_status_t sgx_cmac128_final(

sgx_cmac_state_handle_t cmac_handle,
sgx_cmac_128bit_tag_t* p_hash

);

Parameters

cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

p_hash [out]

This is a pointer to the 128-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 297 -

Return value

SGX_SUCCESS

The hash is obtained successfully.

SGX_ERROR_INVALID_PARAMETER

The hash pointer or CMAC handle is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The CMAC state passed in is likely problematic causing an internal cryp-
tography library failure.

NOTE:
If an unexpected error occurs, then the CMAC state is freed (CMAC handle). In
this case, please call sgx_cmac128_close to free the CMAC state to avoid
memory leak.

Description

This function returns the hash after performing the CMAC 128-bit hash cal-
culation over one or more datasets using the sgx_cmac128_update func-
tion. Memory for the hash should be allocated by the calling code. The handle
to CMAC state used in the sgx_cmac128_update calls must be passed in
as input.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_cmac128_close

sgx_cmac128_close cleans up and deallocates the CMAC algorithm con-
text state that was allocated in function sgx_cmac128_init.

Syntax

sgx_status_t sgx_cmac128_close(

sgx_cmac_state_handle_t cmac_handle
);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 298 -

Parameters

cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

The CMAC state was deallocated successfully.

SGX_ERROR_INVALID_PARAMETER

The CMAC handle is NULL.

Description

Calling sgx_cmac128_close is the last step after performing a CMAC hash
over multiple datasets. The caller uses this function to deallocate memory
used for storing the CMAC algorithm context state.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_aes_ctr_encrypt

sgx_aes_ctr_encrypt performs a Rijndael AES-CTR encryption operation
(counter mode). Only a 128bit key size is supported by this Intel® SGX SDK
cryptography library.

Syntax

sgx_status_t sgx_aes_ctr_encrypt(

const sgx_aes_ctr_128bit_key_t *p_key,
const uint8_t *p_src,
const uint32_t src_len,
uint8_t *p_ctr,
const uint32_t ctr_inc_bits,
uint8_t *p_dst,

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 299 -

Parameters

p_key [in]

A pointer to key to be used in the AES-CTR encryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be encrypted.

src_len [in]

Specifies the length on the input data stream to be encrypted.

p_ctr [in]

A pointer to the initialization vector to be used in the AES-CTR calculation.

ctr_inc_bits [in]

Specifies the number of bits in the counter to be incremented.

p_dst [out]

A pointer to the output encrypted data buffer. This buffer should be allocated
by the calling code.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If key, source, destination, or counter pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

This function encrypts the input data stream of a variable length according to
the CTR mode as specified in [NIST SP 800-38A]. The counter can be thought
of as an IV which increments on successive encryption or decryption calls. For

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 300 -

a given dataset or data stream, the incremented counter block should be used
on successive calls of the encryption process for that given stream. However,
for new or different datasets/streams, the same counter should not be reused,
instead initialize the counter for the new data set.

It is recommended that the source, destination and counter data buffers are
allocated within the enclave.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_aes_ctr_decrypt

sgx_aes_ctr_decrypt performs a Rijndael AES-CTR decryption operation
(counter mode). Only a 128bit key size is supported by this Intel® SGX SDK
cryptography library.

Syntax

sgx_status_t sgx_aes_ctr_decrypt(

const sgx_aes_gcm_128bit_key_t *p_key,
const uint8_t *p_src,
const uint32_t src_len,
uint8_t *p_ctr,
const uint32_t ctr_inc_bits,
uint8_t *p_dst

);

Parameters

p_key [in]

A pointer to key to be used in the AES-CTR decryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be decrypted.

src_len [in]

Specifies the length of the input data stream to be decrypted.

p_ctr [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 301 -

A pointer to the initialization vector to be used in the AES-CTR calculation.

ctr_inc_bits [in]

Specifies the number of bits in the counter to be incremented.

p_dst [out]

A pointer to the output decrypted data buffer. This buffer should be allocated
by the calling code.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

If key, source, destination, or counter pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

This function decrypts the input data stream of a variable length according to
the CTR mode as specified in [NIST SP 800-38A]. The counter can be thought
of as an IV which increments on successive encryption or decryption calls. For
a given dataset or data stream, the incremented counter block should be used
on successive calls of the decryption process for that given stream. However,
for new or different datasets/streams, the same counter should not be reused,
instead initialize the counter for the new data set.

It is recommended that the source, destination and counter data buffers are
allocated within the enclave.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 302 -

sgx_ecc256_open_context

sgx_ecc256_open_context returns an allocated and initialized context
for the elliptic curve cryptosystem over a prime finite field, GF(p). This context
must be created prior to calling sgx_ecc256_create_key_pair or sgx_
ecc256_compute_shared_dhkey. When the calling code has completed
its set of ECC operations, sgx_ecc256_close_context should be called to
cleanup and deallocate the ECC context.

NOTE:
Only a field element size of 256 bits is supported.

Syntax

sgx_status_t sgx_ecc256_open_context(

sgx_ecc_state_handle_t *p_ecc_handle
);

Parameters

p_ecc_handle [out]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The ECC256 GF(p) state is allocated and initialized properly.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The ECC context state was not initialized properly due to an internal cryp-
tography library failure.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 303 -

Description

sgx_ecc256_open_context is utilized to allocate and initialize a 256-bit
GF(p) cryptographic system. The caller does not allocate memory for the ECC
state that this function returns. The state is specific to the implementation of
the cryptography library and thus the allocation is performed by the library
itself. If the ECC cryptographic function using this cryptographic system is com-
pleted or any error occurs, sgx_ecc256_close_context should be called
to free the state allocated by this algorithm.

Public key cryptography successfully allows to solving problems of information
safety by enabling trusted communication over insecure channels. Although
elliptic curves are well studied as a branch of mathematics, an interest to the
cryptographic schemes based on elliptic curves is constantly rising due to the
advantages that the elliptic curve algorithms provide in the wireless com-
munications: shorter processing time and key length.

Elliptic curve cryptosystems (ECCs) implement a different way of creating pub-
lic keys. As elliptic curve calculation is based on the addition of the rational
points in the (x,y) plane and it is difficult to solve a discrete logarithm from
these points, a higher level of safety is achieved through the cryptographic
schemes that use the elliptic curves. The cryptographic systems that encrypt
messages by using the properties of elliptic curves are hard to attack due to
the extreme complexity of deciphering the private key.

Using of elliptic curves allows shorter public key length and encourages cryp-
tographers to create cryptosystems with the same or higher encryption
strength as the RSA or DSA cryptosystems. Because of the relatively short key
length, ECCs do encryption and decryption faster on the hardware that
requires less computation processing volumes.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ecc256_close_context

sgx_ecc256_close_context cleans up and deallocates the ECC 256 GF
(p) state that was allocated in function sgx_ecc256_open_context.

NOTE:
Only a field element size of 256 bits is supported.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 304 -

Syntax

sgx_status_t sgx_ecc256_close_context(

sgx_ecc_state_handle_t ecc_handle
);

Parameters

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The ECC 256 GF(p) state was deallocated successfully.

SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

sgx_ecc256_close_context is used by calling code to deallocate
memory used for storing the ECC 256 GF(p) state used in ECC cryptographic
calculations.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ecc256_create_key_pair

sgx_ecc256_create_key_pair generates a private/public key pair on
the ECC curve for the given cryptographic system. The calling code is respons-
ible for allocating memory for the public and private keys. sgx_ecc256_

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 305 -

open_context must be called to allocate and initialize the ECC context prior
to making this call.

Syntax

sgx_status_t sgx_ecc256_create_key_pair(

sgx_ec256_private_t *p_private,
sgx_ec256_public_t *p_public,
sgx_ecc_state_handle_t ecc_handle

);

Parameters

p_private [out]

A pointer to the private key which is a number that lies in the range of [1, n-1]
where n is the order of the elliptic curve base point.

NOTE:
Value is LITTLE ENDIAN.

p_public [out]

A pointer to the public key which is an elliptic curve point such that:

public key = private key * G, where G is the base point of the elliptic curve.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The public/private key pair was successfully generated.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key or public key is invalid.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 306 -

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The key creation process failed due to an internal cryptography library failure.

Description

This function populates private/public key pair. The calling code allocates
memory for the private and public key pointers to be populated. The function
generates a private key p_private and computes a public key p_public of
the elliptic cryptosystem over a finite field GF(p).

The private key p_private is a number that lies in the range of [1, n-1]
where n is the order of the elliptic curve base point.

The public key p_public is an elliptic curve point such that p_public =
p_private *G, where G is the base point of the elliptic curve.

The context of the point p_public as an elliptic curve point must be created
by using the function sgx_ecc256_open_context.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ecc256_compute_shared_dhkey

sgx_ecc256_compute_shared_dhkey generates a secret key shared
between two participants of the cryptosystem. The calling code should alloc-
ate memory for the shared key to be generated by this function.

Syntax

sgx_status_t sgx_ecc256_compute_shared_dhkey(

const sgx_ec256_private_t *p_private_b,
const sgx_ec256_public_t *p_public_ga,
sgx_ec256_dh_shared_t *p_shared_key,
sgx_ecc_state_handle_t ecc_handle

);

Parameters

p_private_b [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 307 -

A pointer to the local private key.

NOTE:
Value is LITTLE ENDIAN.

p_public_ga [in]

A pointer to the remote public key.

NOTE:
Value is LITTLE ENDIAN.

p_shared_key [out]

A pointer to the secret key generated by this function which is a common
point on the elliptic curve.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The public/private key pair was successfully generated.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key, public key, or shared key pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The key creation process failed due to an internal cryptography library failure.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 308 -

This function computes the Diffie-Hellman shared key based on the enclave’s
own (local) private key and remote enclave’s public Ga Key. The calling code
allocates memory for shared key to be populated by this function.

The function computes a secret number sharedKey, which is a secret key
shared between two participants of the cryptosystem.

In cryptography, metasyntactic names such as Alice as Bob are normally used
as examples and in discussions and stand for participant A and participant B.

Both participants (Alice and Bob) use the cryptosystem for receiving a com-
mon secret point on the elliptic curve called a secret key (sharedKey). To
receive a secret key, participants apply the Diffie-Hellman key-agreement
scheme involving public key exchange. The value of the secret key entirely
depends on participants.

According to the scheme, Alice and Bob perform the following operations:

1. Alice calculates her own public key pubKeyA by using her private key

privKeyA: pubKeyA = privKeyA * G, where G is the base point of the
elliptic curve.

2. Alice passes the public key to Bob.

3. Bob calculates his own public key pubKeyB by using his private key

privKeyB: pubKeyB = privKeyB * G, where G is a base point of the elliptic
curve.

4. Bob passes the public key to Alice.

5. Alice gets Bob's public key and calculates the secret point shareKeyA. When
calculating, she uses her own private key and Bob's public key and applies the
following formula:

shareKeyA = privKeyA * pubKeyB = privKeyA * privKeyB *
G.

6. Bob gets Alice's public key and calculates the secret point shareKeyB. When
calculating, he uses his own private key and Alice's public key and applies the
following formula:

shareKeyB = privKeyB * pubKeyA = privKeyB * privKeyA *
G.

As the following equation is true privKeyA * privKeyB * G =
privKeyB * privKeyA * G, the result of both calculations is the same,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 309 -

that is, the equation shareKeyA = shareKeyB is true. The secret point serves as
a secret key.

Shared secret shareKey is an x-coordinate of the secret point on the elliptic
curve. The elliptic curve domain parameters must be hitherto defined by the
function: sgx_ecc256_open_context.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ecc256_check_point

sgx_ecc256_check_point checks whether the input point is a valid point
on the ECC curve for the given cryptographic system. sgx_ecc256_open_
context must be called to allocate and initialize the ECC context prior to
making this call.

Syntax

sgx_status_t sgx_ecc256_check_point(

const sgx_ec256_public_t *p_point,
const sgx_ecc_state_handle_t ecc_handle,
int *p_valid

);

Parameters

p_point [in]

A pointer to the point to perform validity check on.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 310 -

p_valid [out]

A pointer to the validation result.

Return value

SGX_SUCCESS

The validation process is performed successfully. Check p_valid to get the val-
idation result.

SGX_ERROR_INVALID_PARAMETER

If the input ecc handle, p_point or p_valid is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

sgx_ecc256_check_point validates whether the input point is a valid
point on the ECC curve for the given cryptographic system.

The typical validation result is one of the two values:

1 - The input point is valid

0 – The input point is not valid

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ecdsa_sign

sgx_ecdsa_sign computes a digital signature with a given private key over
an input dataset.

Syntax

sgx_status_t sgx_ecdsa_sign(

const uint8_t *p_data,
uint32_t data_size,
const sgx_ec256_private_t *p_private,
sgx_ec256_signature_t *p_signature,
sgx_ecc_state_handle_t ecc_handle

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 311 -

Parameters

p_data [in]

A pointer to the data to calculate the signature over.

data_size [in]

The size of the data to be signed.

p_private [in]

A pointer to the private key.

NOTE:
Value is LITTLE ENDIAN.

p_signature [out]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The digital signature is successfully generated.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key, data, or signature pointer is NULL. Or the
data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 312 -

The signature generation process failed due to an internal cryptography lib-
rary failure.

Description

This function computes a digital signature over the input dataset based on the
input private key.

A message digest is a fixed size number derived from the original message
with an applied hash function over the binary code of the message. (SHA256
in this case)

The signer's private key and the message digest are used to create a sig-
nature.

A digital signature over a message consists of a pair of large numbers, 256-bits
each, which the given function computes.

The scheme used for computing a digital signature is of the ECDSA scheme, an
elliptic curve of the DSA scheme.

The keys can be generated and set up by the function: sgx_ecc256_cre-
ate_key_pair.

The elliptic curve domain parameters must be created by function: sgx_
ecc256_open_context.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ecdsa_verify

sgx_ecdsa_verify verifies the input digital signature with a given public
key over an input dataset.

Syntax

sgx_status_t sgx_ecdsa_verify(

const uint8_t *p_data,
uint32_t data_size,
const sgx_ec256_public_t *p_public,
const sgx_ec256_signature_t *p_signature,
uint8_t *p_result,
sgx_ecc_state_handle_t ecc_handle

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 313 -

Parameters

p_data [in]

Pointer to the signed dataset to verify.

data_size [in]

Size of the dataset to have its signature verified.

p_public [in]

Pointer to the public key to be used in the calculation of the signature.

NOTE:
Value is LITTLE ENDIAN.

p_signature [in]

Pointer to the signature to be verified.

NOTE:
Value is LITTLE ENDIAN.

p_result [out]

Pointer to the result of the verification check populated by this function.

ecc_handle [in]

Handle to the ECC GF(p) context state allocated and initialized used to per-
form elliptic curve cryptosystem standard functions. The algorithm stores the
intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

Digital signature verification was performed successfully. Check p_result to get
the verification result.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, public key, data, result or signature pointer is NULL,
or the data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 314 -

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Verification process failed due to an internal cryptography library failure.

Description

This function verifies the signature for the given data set based on the input
public key.

A digital signature over a message consists of a pair of large numbers, 256-bits
each, which could be created by function: sgx_ecdsa_sign. The scheme
used for computing a digital signature is of the ECDSA scheme, an elliptic
curve of the DSA scheme.

The typical result of the digital signature verification is one of the two values:

SGX_EC_VALID - Digital signature is valid

SGX_EC_INVALID_SIGNATURE - Digital signature is not valid

The elliptic curve domain parameters must be created by function: sgx_
ecc256_open_context.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_rsa3072_sign

sgx_rsa3072_sign computes a digital signature for a given dataset based
on RSA 3072 private key.

Syntax

sgx_status_t sgx_rsa3072_sign(

const uint8_t *p_data,
uint32_t data_size,
const sgx_rsa3072_key_t *p_key,
sgx_rsa3072_signature_t *p_signature

);

Parameters

p_data [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 315 -

A pointer to the data to calculate the signature over.

data_size [in]

The size of the data to be signed.

p_key [in]

A pointer to the RSA key.

NOTE:
Value is LITTLE ENDIAN.

p_signature [out]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

Return value

SGX_SUCCESS

The digital signature is successfully generated.

SGX_ERROR_INVALID_PARAMETER

The private key, data, or signature pointer is NULL. Or the data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The signature generation process failed due to an internal cryptography lib-
rary failure.

Description

This function computes a digital signature over the input dataset based on the
RSA 3072 key.

A message digest is a fixed size number derived from the original message
with an applied hash function over the binary code of the message. (SHA256
in this case)

The signer's private key and the message digest are used to create a sig-
nature.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 316 -

The scheme used for computing a digital signature is of the RSASSA-PKCS1-
v1_5 scheme.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_rsa3072_sign_ex

sgx_rsa3072_sign_ex computes a digital signature for a given dataset
based on the RSA 3072 private key and the optional corresponding RSA
3072 public key.

Syntax

sgx_status_t sgx_rsa3072_sign_ex(

const uint8_t *p_data,
uint32_t data_size,
const sgx_rsa3072_key_t *p_key,
const sgx_rsa3072_public_key_t *p_public,
sgx_rsa3072_signature_t *p_signature

);

Parameters

p_data [in]

A pointer to the data to calculate the signature over.

data_size [in]

The size of the data to be signed.

p_key [in]

A pointer to the RSA private key.

NOTE:
Value is LITTLE ENDIAN.

p_public [in]

A pointer to the RSA public key. Can be NULL.

NOTE:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 317 -

Value is LITTLE ENDIAN.

p_signature [out]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

Return value

SGX_SUCCESS

The digital signature is successfully generated.

SGX_ERROR_INVALID_PARAMETER

The private key, data, or signature pointer is NULL. Or the data size is 0. Or the
RSA private key and the public key do not match.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The signature generation process failed due to an internal cryptography lib-
rary failure.

Description

This function computes a digital signature over the input dataset based on the
RSA 3072 private key and verifies the signature using the corresponding RSA
3072 public key if provided.

A message digest is a fixed size number derived from the original message
with an applied hash function over the binary code of the message. (SHA256
in this case)

The signer's private key and the message digest are used to create a sig-
nature.

The scheme used for computing a digital signature is of the RSASSA-PKCS1-
v1_5 scheme.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 318 -

sgx_rsa3072_verify

sgx_rsa3072_verify verifies the input digital signature for the given data-
set based on the RSA 3072 public key.

Syntax

sgx_status_t sgx_rsa3072_verify(

const uint8_t *p_data,
uint32_t data_size,
const sgx_rsa3072_public_key_t *p_public,
const sgx_rsa3072_signature_t *p_signature,
sgx_rsa_result_t *p_result

);

Parameters

p_data [in]

A pointer to the signed dataset to be verified.

data_size [in]

The size of the dataset to have its signature verified.

p_public [in]

A pointer to the public key to be used in the calculation of the signature.

NOTE:
Value is LITTLE ENDIAN.

p_signature [in]

A pointer to the signature to be verified.

NOTE:
Value is LITTLE ENDIAN.

p_result [out]

A pointer to the result of the verification check populated by this function.

Return value

SGX_SUCCESS

The digital signature verification was performed successfully. Check p_result
to get the verification result.

SGX_ERROR_INVALID_PARAMETER

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 319 -

The public key, data, result or signature pointer is NULL or the data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

The verification process failed due to an internal cryptography library failure.

Description

This function verifies the signature for the given data set based on the input
RSA 3072 public key.

A digital signature over a message is a buffer of 384-bytes, which could be cre-
ated by function: sgx_rsa3072_sign. The scheme used for computing a
digital signature is of the RSASSA-PKCS1-v1_5 scheme.

The typical result of the digital signature verification is one of the two values:

SGX_RSA_VALID - Digital signature is valid

SGX_RSA_INVALID_SIGNATURE - Digital signature is not valid

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_create_rsa_key_pair

sgx_create_rsa_key_pair generates public and private key pairs for the
RSA cryptographic algorithm with input key size and extracts each part of the
key pair to the prepared buffers.

Syntax

sgx_status_t sgx_create_rsa_key_pair(

int n_byte_size,
int e_byte_size,
unsigned char *p_n,
unsigned char *p_d,
unsigned char *p_e,
unsigned char *p_p,
unsigned char *p_q,
unsigned char *p_dmp1,
unsigned char *p_dmq1,
unsigned char *p_iqmp);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 320 -

Parameters

n_byte_size [in]

Size in bytes of the RSA key modulus.

e_byte_size [in]

Size in bytes of the RSA public exponent.

p_n [out]

Pointer to the generated RSA modulus.

p_d [out]

Pointer to the generated RSA private exponent.

p_e [in, out]

Pointer to the generated RSA private exponent.

p_p [out]

Pointer to the RSA key factor p.

p_q [out]

Pointer to the RSA key factor q.

p_dmp1 [out]

Pointer to the RSA key factor dmp1.

p_dmq1 [out]

Pointer to the RSA key factor dmq1.

p_iqmp [out]

Pointer to the RSA key factor iqmp.

Return value

SGX_SUCCESS

RSA key pair is successfully generated.

SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 321 -

SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA key pair generation.

Description

This function generates public and private key pairs for the RSA cryptographic
algorithm and extracts each part of the key pair to the prepared buffers. If the
RSA public exponent is specified, this function utilizes the speicified RSA pub-
lic exponent to the generated RSA key pair.

Before calling the function, you need to allocate memory for all the RSA key
components (n, d, e, p, q, dmp1, dmq1, iqmp).

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_create_rsa_priv1_key

sgx_create_rsa_priv1_key generates a private key for the RSA cryp-
tographic algorithm with the input RSA key components (n. e, d).

Syntax

sgx_status_t sgx_create_rsa_priv1_key(

int n_byte_size,
int e_byte_size,
int d_byte_size,
const unsigned char *le_n,
const unsigned char *le_e,
const unsigned char *le_d,
void **new_pri_key1

);

Parameters

n_byte_size [in]

Size in bytes of the RSA key modulus.

e_byte_size [in]

Size in bytes of the RSA public exponent.

d_byte_size [in]

Size in bytes of the RSA private exponent.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 322 -

le_n [in]

Pointer to the RSA key modulus buffer.

le_e [in]

Pointer to the RSA public exponent buffer. e.

le_d [in]

Pointer to the RSA private exponent buffer d.

new_pri_key1 [out]

Pointer to the generated RSA private key.

Return value

SGX_SUCCESS

RSA private key is successfully generated.

SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.

SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA private key generation.

Description

This function generates a private key for the RSA cryptographic algorithm with
the input RSA key components (n. e, d).

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_create_rsa_priv2_key

sgx_create_rsa_priv2_key generates a private key for the RSA cryp-
tographic algorithm with the input RSA key components.

Syntax

sgx_status_t sgx_create_rsa_priv2_key(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 323 -

int mod_size,
int exp_size,
const unsigned char *p_rsa_key_e,
const unsigned char *p_rsa_key_p,
const unsigned char *p_rsa_key_q,
const unsigned char *p_rsa_key_dmp1,
const unsigned char *p_rsa_key_dmq1,
const unsigned char *p_rsa_key_iqmp,
void **new_pri_key2

);

Parameters

mod_size [in]

Size in bytes of the RSA key modulus.

exp_size [in]

Size in bytes of the RSA public exponent.

p_rsa_key_e [in]

Pointer to the RSA public exponent buffer.

p_rsa_key_p [in]

Pointer to the prime number p.

p_rsa_key_q [in]

Pointer to the prime number q.

p_rsa_key_dmp1 [in]

Pointer to the RSA factor dmp1. dmp1=q mod (p-1)

p_rsa_key_dmq1 [in]

Pointer to the RSA factor dmq1. dmq1=p mod (q-1)

p_rsa_key_iqmp [in]

Pointer to the RSA factor iqmp. iqmp=q^-1 mod p

new_pri_key2 [out]

Pointer to the generated RSA private key.

Return value

SGX_SUCCESS

RSA private key is successfully generated.

SGX_ERROR_INVALID_PARAMETER

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 324 -

Some of the pointers are NULL, or the input size is less than 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.

SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA private key generation.

Description

This function generates a private key for the RSA cryptographic algorithm with
the input RSA key components (p, q, dmp1, dmq1, iqmp).

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_create_rsa_pub1_key

sgx_create_rsa_pub1_key generates a public key for the RSA cryp-
tographic algorithm with the input RSA key components.

Syntax

sgx_status_t sgx_create_rsa_pub1_key(

int mod_size,
int exp_size,
const unsigned char *le_n,
const unsigned char *le_e,
void **new_pub_key1

);

Parameters

mod_size [in]

Size in bytes of the RSA key modulus.

exp_size [in]

Size in bytes of the RSA public exponent.

le_n [in]

Pointer to the RSA modulus buffer.

le_e [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 325 -

Pointer to the RSA public exponent buffer.

new_pub_key1 [out]

Pointer to the generated RSA public key.

Return value

SGX_SUCCESS

RSA public key is successfully generated.

SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.

SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA public key generation.

Description

This function generates a public key for the RSA cryptographic algorithm with
the input RSA key components (n, e).

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_free_rsa_key

sgx_free_rsa_keycleans up and deallocates the input RSA key.

Syntax

sgx_status_t sgx_free_rsa_key(

void *p_rsa_key,
sgx_rsa_key_type_t key_type,
int mod_size,
int exp_size

);

Parameters

p_rsa_key [in]

Pointer to the RSA key.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 326 -

key_type [in]

RSA key type .

mod_size[in]

Size in bytes for the RSA key modules.

exp_size[in]

Size in bytes of the RSA public exponent.

Return value

SGX_SUCCESS

RSA key is successfully cleaned up.

Description

This function clears the RSA key generated by one of the following APIs:

sgx_create_rsa_priv1_key

sgx_create_rsa_priv2_key

sgx_create_rsa_pub1_key

You can use this function to deallocate the memory used for storing the RSA
key.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_rsa_pub_encrypt_sha256

sgx_rsa_pub_encrypt_sha256 performs the RSA-OAEP encryption oper-
ation with the SHA-256 algorithm.

Syntax

sgx_status_t sgx_rsa_pub_encrypt_sha256(

const void* rsa_key,
unsigned char* pout_data,
size_t* pout_len,
const unsigned char* pin_data,
const size_t pin_len

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 327 -

Parameters

rsa_key [in]

Pointer to the RSA public key.

pout_data [out]

Pointer to the output cipher text buffer.

pout_len [out]

Length of the output cipher text buffer.

pin_data [in]

Pointer to the input data buffer.

pin_len [in]

Length of the input data buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.

SGX_ERROR_UNEXPECTED

Unexpected error occurred during the encryption operation.

Description

This function carries out the RSA-OAEP encryption scheme with the SHA256
algorithm to encrypt the input data stream of a variable length.

You should allocate the source, destination, and counter data buffers within
the enclave.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 328 -

sgx_rsa_priv_decrypt_sha256

sgx_rsa_priv_decrypt_sha256 performs the RSA-OAEP decryption
operation with the SHA-256 algorithm.

Syntax

sgx_status_t sgx_rsa_priv_decrypt_sha256(

const void* rsa_key,
unsigned char* pout_data,
size_t* pout_len,
const unsigned char* pin_data,
const size_t pin_len

);

Parameters

rsa_key [in]

Pointer to the RSA private key.

pout_data [out]

Pointer to the output decrypted data buffer.

pout_len [out]

Length of the output decrypted data buffer.

pin_data [in]

Pointer to the input data buffer to be decrypted.

pin_len [in]

Length of the input data buffer to be decrypted.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.

SGX_ERROR_UNEXPECTED

Unexpected error occurred during the encryption operation.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 329 -

Description

This function carries out the RSA-OAEP decryption scheme with the SHA256
algorithm to decrypt the input data stream of a variable length.

You should allocate the source, destination, and counter data buffers within
the enclave.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_calculate_ecdsa_priv_key

sgx_calculate_ecdsa_priv_key generates an ECDSA private key based
on an input random seed.

Syntax

sgx_status_t sgx_calculate_ecdsa_priv_key(

const unsigned char* hash_drg,
int hash_drg_len,
const unsigned char* sgx_nistp256_r_m1,
int sgx_nistp256_r_m1_len,
unsigned char* out_key,
int out_key_len

);

Parameters

hash_drg [in]

Pointer to the input random seed.

hash_drg_len [in]

Length of the input random seed.

sgx_nistp256_r_m1 [in]

Pointer to the buffer for n-1 where n is order of the ECC group used.

sgx_nistp256_r_m1_len [in]

Length for the buffer for nistp256.

out_key [out]

Pointer to the generated ECDSA private key.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 330 -

out_key_len [in]

Length of the prepared buffer for ECDSA private key.

Return value

SGX_SUCCESS

ECDSA private key is successfully generated.

SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.

SGX_ERROR_UNEXPECTED

Unexpected error occurred during the ECDSA private key generation.

Description

This function generates an ECDSA private key based on an input random seed.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ra_init

The sgx_ra_init function creates a context for the remote attestation and
key exchange process.

Syntax

sgx_status_t sgx_ra_init(

const sgx_ec256_public_t * p_pub_key,
int b_pse,
sgx_ra_context_t * p_context

);

Parameters

p_pub_key [in] (Little Endian)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 331 -

The EC public key of the service provider based on the NIST P-256 elliptic
curve.

b_pse [in]

Reserved for backward compatibility.

p_context [out]

The output context for the subsequent remote attestation and key exchange
process, to be used in sgx_ra_get_msg1 and sgx_ra_proc_msg2.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation, or contexts reach
the limits.

SGX_ERROR_AE_SESSION_INVALID

The session is invalid or ended by the server.

SGX_ERROR_UNEXPECTED

Indicates that an unexpected error occurred.

Description

This is the first API user should call for a key exchange process. The context
returned from this function is used as a handle for other APIs in the key
exchange library.

Requirements

Header sgx_tkey_exchange.h sgx_tkey_exchange.edl

Library libsgx_tkey_exchange.a

sgx_ra_init_ex

The sgx_ra_init_ex function creates a context for the remote attestation
and key exchange process while it allows the use of a custom defined Key
Derivation Function (KDF).

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 332 -

Syntax

sgx_status_t sgx_ra_init_ex(

const sgx_ec256_public_t * p_pub_key,
int b_pse,
sgx_ra_derive_secret_keys_t derive_key_cb,
sgx_ra_context_t * p_context

);

Parameters

p_pub_key [in] (Little Endian)

The EC public key of the service provider based on the NIST P-256 elliptic
curve.

b_pse [in]

Reserved for backward compatibility.

derive_key_cb [in]

This a pointer to a call back routine matching the funtion prototype ofsgx_
ra_derive_secret_keys_t . This function takes the Diffie-Hellman shared
secret as input to allow the ISV enclave to generate their own derived shared
keys (SMK, SK, MK and VK).

p_context [out]

The output context for the subsequent remote attestation and key exchange
process, to be used in sgx_ra_get_msg1 and sgx_ra_proc_msg2.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation, or contexts reach
the limits.

SGX_ERROR_AE_SESSION_INVALID

The session is invalid or ended by the server.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 333 -

SGX_ERROR_UNEXPECTED

Indicates that an unexpected error occurred.

Description

This is the first API user should call for a key exchange process. The context
returned from this function is used as a handle for other APIs in the key
exchange library.

Requirements

Header sgx_tkey_exchange.h sgx_tkey_exchange.edl

Library libsgx_tkey_exchange.a

sgx_ra_get_keys

The sgx_ra_get_keys function is used to get the negotiated keys of a
remote attestation and key exchange session. This function should only be
called after the service provider accepts the remote attestation and key
exchange protocol message 3 produced by sgx_ra_proc_msg2.

Syntax

sgx_status_t sgx_ra_get_keys(

sgx_ra_context_t context,
sgx_ra_key_type_t type,
sgx_ra_key_128_t *p_key

);

Parameters

context [in]

Context returned by sgx_ra_init.

type [in]

The type of the keys, which can be SGX_RA_KEY_MKor SGX_RA_KEY_SK.

If the RA context was generated by sgx_ra_init, the returned SGX_RA_
KEY_MK or SGX_RA_KEY_SKis derived from the Diffie-Hellman shared secret
elliptic curve field element between the service provider and the application
enclave using the following Key Derivation Function (KDF):

KDK = AES-CMAC(key0, gab x-coordinate)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 334 -

SGX_RA_KEY_MK = AES-CMAC(KDK,
0x01||’MK’||0x00||0x80||0x00)

SGX_RA_KEY_SK = AES-CMAC(KDK,
0x01||’SK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the Key derivation calculation is the Diffie-Hellman shared secret
elliptic curve field element in Little Endian format. The plain text used in each
key calculation includes:

l a counter (0x01)

l a label: the ASCII representation of one of the strings 'MK' or 'SK' in Little
Endian format

l a bit length (0x80)

If the RA context was generated by the sgx_ra_init_ex API, the KDF used
to generate SGX_RA_KEY_MK and SGX_RA_KEY_SK is defined in the imple-
mentation of the call back function provided to the sgx_ra_init_ex func-
tion.

p_key [out]

The key returned.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.

SGX_ERROR_INVALID_STATE

Indicates this API is invoked in incorrect order, it can be called only after a suc-
cess session has been established. In other words, sgx_ra_proc_msg2
should have been called and no error returned.

Description

After a successful key exchange process, this API can be used in the enclave to
get specific key associated with this remote attestation and key exchange ses-
sion.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 335 -

Requirements

Header sgx_tkey_exchange.h sgx_tkey_exchange.edl

Library libsgx_tkey_exchange.a

sgx_ra_close

Call the sgx_ra_close function to release the remote attestation and key
exchange context after the process is done and the context isn’t needed any-
more.

Syntax

sgx_status_t sgx_ra_close(

sgx_ra_context_t context
);

Parameters

context [in]

Context returned by sgx_ra_init.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates the context is invalid.

Description

At the end of a key exchange process, the caller needs to use this API in an
enclave to clear and free memory associated with this remote attestation ses-
sion.

Requirements

Header sgx_tkey_exchange.h sgx_key_exchange.edl

Library libsgx_tkey_exchange.a

sgx_dh_init_session

Initialize DH secure session according to the caller’s role in the establishment.

Syntax

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 336 -

sgx_status_t sgx_dh_init_session(

sgx_dh_session_role_t role,
sgx_dh_session_t * session

);

Parameters

role [in]

Indicates which role the caller plays in the secure session establishment.

The value of role of the initiator of the session establishment must be SGX_
DH_SESSION_INITIATOR.

The value of role of the responder of the session establishment must be SGX_
DH_SESSION_RESPONDER.

session [out]

A pointer to the instance of the DH session which contains entire information
about session establishment.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

Session is initialized successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

Requirements

Header sgx_dh.h

Library libsgx_tservice.aor libsgx_tservice_sim.a (sim-
ulation)

.

sgx_dh_responder_gen_msg1

Generates MSG1 for the responder of DH secure session establishment and
records ECC key pair in session structure.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 337 -

Syntax

sgx_status_t sgx_dh_responder_gen_msg1(

sgx_dh_msg1_t * msg1,
sgx_dh_session_t * dh_session

);

Parameters

msg1 [out]

A pointer to an sgx_dh_msg1_t msg1 buffer. The buffer holding the msg1
message, which is referenced by this parameter, must be within the enclave.

The DH msg1 contains the responder’s public key and report based target
info.

dh_session [in/out]

A pointer that points to the instance of sgx_dh_session_t. The buffer hold-
ing the DH session information, which is referenced by this parameter, must
be within the enclave.

NOTE
As output, the DH session structure contains the responder’s public key and
private key for the current session.

Return value

SGX_SUCCESS

MSG1 is generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 338 -

Header sgx_dh.h

Library libsgx_tservice.aor libsgx_tservice_sim.a (sim-
ulation)

sgx_dh_initiator_proc_msg1

The initiator of the DH secure session establishment handles msg1 sent by a
responder, generates msg2, and records the ECC key pair of the initiator in the
DH session structure.

NOTE
To use DH key exchange 2.0 APIs, define SGX_USE_LAv2_INITIATOR.

Syntax

sgx_status_t sgx_dh_initiator_proc_msg1(

const sgx_dh_msg1_t * msg1,
sgx_dh_msg2_t * msg2,
sgx_dh_session_t * dh_session

);

Parameters

msg1 [in]

Pointer to the dh message 1 buffer generated by a session responder. The buf-
fer must be in enclave address space.

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

msg2 [out]

Pointer to thedh message 2 buffer. The buffer must be in enclave address
space.

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

dh_session [in/out]

Pointer to the dh session structure used during establishment. The buffer
must be in enclave address space.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 339 -

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

Return value

SGX_SUCCESS

msg1 is processed and msg2 is generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in an incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY

Enclave is out of memory.

SGX_ERROR_UNEXPECTED

Unexpected error occurred.

Requirements

Header sgx_dh.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

sgx_dh_responder_proc_msg2

Handles msg2 sent by an initiator,derives AEK, updates the session inform-
ation, and generates msg3.

NOTE
To use DH key exchange 2.0 APIs, define SGX_USE_LAv2_INITIATOR .

Syntax

sgx_status_t sgx_dh_responder_proc_msg2(

const sgx_dh_msg2_t * msg2,
sgx_dh_msg3_t * msg3,
sgx_dh_session_t * dh_session,
sgx_key_128bit_t * aek,
sgx_dh_session_enclave_identity_t * initiator_identity

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 340 -

Parameters

msg2 [in]

Pointer to the dh message 2 buffer generated by a session initiator. The buffer
must be in enclave address space.

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

msg3 [out]

Pointer to the dh message 3 buffer generated by a session responder in this
function. The buffer must be in enclave address space.

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

dh_session [in/out]

Pointer to the dh session structure used during establishment. The buffer
must be in enclave address space.

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

aek [out]

Pointer to instance of sgx_key_128bit_t. The aek is derived as follows:

KDK := CMAC(key0, LittleEndian(gab x-coordinate))

AEK = AES-CMAC(KDK, 0x01||’AEK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the AEK calculation includes:

l a counter (0x01)

l a label: the ASCII representation of the string 'AEK' in Little Endian
format)

l a bit length (0x80)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 341 -

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

initiator_identity [out]

Pointer to instance of sgx_dh_session_enclave_identity_t. Identity
information of initiator includes isv svn, isv product id, the enclave attributes,
MRSIGNER, and MRENCLAVE. The buffer must be located in the enclave
address space. Check the identity of the peer and decide whether to trust the
peer and use the aek.

NOTE
The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

Return value

SGX_SUCCESS

msg2 is processed and msg3 is generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in an incorrect order or state.

SGX_ERROR_KDF_MISMATCH

Key derivation function does not match.

SGX_ERROR_OUT_OF_MEMORY

Enclave is out of memory.

SGX_ERROR_UNEXPECTED

Unexpected error occurred.

Requirements

Header sgx_dh.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 342 -

sgx_dh_initiator_proc_msg3

The initiator handles msg3 sent by responder and then derives AEK, updates
session information and gets responder’s identity information.

Syntax

sgx_status_t sgx_dh_initiator_proc_msg3(

const sgx_dh_msg3_t * msg3,
sgx_dh_session_t * dh_session,
sgx_key_128bit_t * aek,
sgx_dh_session_enclave_identity_t * responder_identity

);

Parameters

msg3 [in]

Point to dh message 3 buffer generated by session responder, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

dh_session [in]

Point to dh session structure that is used during establishment, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

aek [out]

A pointer that points to instance of sgx_key_128bit_t. The aek is derived
as follows:

KDK:= CMAC(key0, LittleEndian(gab x-coordinate))

AEK = AES-CMAC(KDK, 0x01||’AEK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the AEK calculation includes:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 343 -

l a counter (0x01)

l a label: the ASCII representation of the string 'AEK' in Little Endian format

l a bit length (0x80)

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

responder_identity [out]

Identity information of responder including isv svn, isv product id, the enclave
attributes, MRSIGNER, and MRENCLAVE. The buffer must be in enclave
address space. The caller should check the identity of the peer and decide
whether to trust the peer and use the aek or the msg3_body.additional_
prop field of msg3.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

The function is done successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The API is invoked in incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Header sgx_dh.h

Library libsgx_tservice.a or libsgx_tservice_sim.a (sim-
ulation)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 344 -

sgx_fopen

The sgx_fopen function creates or opens a protected file.

Syntax

SGX_FILE* sgx_fopen(

const char* filename,
const char* mode,
const sgx_key_128bit_t *key

);

Parameters

filename [in]

The name of the file to be created or opened.

mode [in]

The file open mode string. Allowed values are any combination of ‘r’, ‘w’ or ‘a’,
with possible ‘+’ and possible ‘b’ (since string functions are currently not sup-
ported, ‘b’ is meaningless).

key [in]

The encryption key of the file. This key is used as a key derivation key, used for
deriving encryption keys for the file. If the file is created with sgx_fopen, you
should protect this key and provide it as input every time the file is opened.

Return value

If the function succeeds, it returns a valid file pointer, which can be used by all
the other functions in the Protected FS API, otherwise, NULL is returned and
errno is set with an appropriate error code. See Protected FS Error Codes
for more details about errors.

Description

sgx_fopen is similar to the C file API fopen. It creates a new Protected File
or opens an existing Protected File created with a previous call to sgx_
fopen. Regular files cannot be opened with this API.

For more details about this API and its parameters, check the fopen doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 345 -

sgx_fopen_auto_key

The sgx_fopen_auto_key function creates or opens a protected file.

Syntax

SGX_FILE* sgx_fopen_auto_key(

const char* filename,
const char* mode

);

Parameters

filename [in]

The name of the file to be created or opened.

mode [in]

The file open mode string. Allowed values are any combination of ‘r’, ‘w’ or ‘a’,
with possible ‘+’ and possible ‘b’ (since string functions are currently not sup-
ported, ‘b’ is meaningless).

Return value

If the function succeeds, it returns a valid file pointer, which can be used by all
the other functions in the Protected FS API, otherwise, NULL is returned and
errno is set with an appropriate error code. See Protected FS Error Codes
for more details about errors.

Description

sgx_fopen_auto_key is similar to the C file API fopen. It creates a new Pro-
tected File or opens an existing Protected File created with a previous call to
sgx_fopen_auto_key. Regular files cannot be opened with this API.

For more details about this API and its parameters, check the fopen doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fclose

The sgx_fclose function closes a protected file handle.

Syntax

int32_t sgx_fclose(

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 346 -

SGX_FILE* stream
);

Parameters

stream [in]

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

0

The file was closed successfully.

1

There were errors during the operation.

Description

sgx_fclose is similar to the C file API fclose. It closes an open Protected
File handle created with a previous call to sgx_fopen or sgx_fopen_
auto_key. After a call to this function, the handle is invalid even if an error is
returned.

For more details about this API and its parameters, check the fclose doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fread

The sgx_fread function reads the requested amount of data from the file,
and extends the file pointer by that amount.

Syntax

size_t sgx_fread(

void* ptr,
size_t size,
size_t count,
SGX_FILE* stream

);

Parameters

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 347 -

ptr[out]

A pointer to a buffer of at least size*count bytes, to receive the data read
from the file.

size [in]

The size of each block to be read.

count [in]

The number of blocks to be read.

stream [in]

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

The number of blocks of size size that were read from the file.

Description

sgx_fread is similar to the C file API fread. In case of an error, sgx_fer-
ror can be called to get the error code.

For more details about this API and its parameters, check the fread doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fwrite

The sgx_fwrite function writes the given amount of data to the file, and
extends the file pointer by that amount.

Syntax

size_t sgx_fwrite(

const void* ptr,
size_t size,
size_t count,
SGX_FILE* stream

);

Parameters

ptr [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 348 -

A pointer to a buffer of at least size*count bytes, that contains the data to
write to the file

size [in]

The size of each block to be written.

count [in]

The number of blocks to be written.

stream [in]

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

The number of blocks of size size that were written to the file.

Description

sgx_fwrite is similar to the C file API fwrite. In case of an error, sgx_fer-
ror can be called to get the error code.

For more details about this API and its parameters, check the fwrite doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fflush

The sgx_fflush function forces a cache flush, and if it returns successfully, it
is guaranteed that your changes are committed to a file on the disk.

Syntax

int32_t sgx_fflush(

SGX_FILE* stream
);

Parameters

stream [in]

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 349 -

0

The operation completed successfully.

1

There were errors during the operation. sgx_ferror can be called to get the
error code.

Description

sgx_fflush is similar to the C file API fflush. This function flushes all the
modified data from the cache and writes it to a file on the disk. In case of an
error, sgx_ferror can be called to get the error code. Note that this func-
tion does not clear the cache, but only flushes the changes to the actual file on
the disk. Flushing also happens automatically when the cache is full and page
eviction is required.

For more details about this API and its parameters, check the fflush doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_ftell

The sgx_ftell function creates or opens a protected file.

Syntax

int64_t sgx_ftell(

SGX_FILE* stream
);

Parameters

stream [in]

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

If the function succeeds, it returns the current value of the position indicator
of the file, otherwise, -1 is returned and errno is set with an appropriate error
code. See Protected FS Error Codes for more details about errors.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 350 -

sgx_ftell is similar to the C file API ftell.

For more details about this API and its parameters, check the ftell doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fseek

The sgx_fseek function sets the current value of the position indicator of
the file.

Syntax

int64_t sgx_fseek(

SGX_FILE* stream,
int64_t offset,
int origin

);

Parameters

stream [in]

A file handle that was returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

offset [in]

The new required value, relative to the origin parameter.

origin [in]

The origin from which to calculate the offset (SEEK_SET, SEEK_CUR or
SEEK_END).

Return value

0

The operation completed successfully.

-1

There were errors during the operation. sgx_ferror can be called to get the
error code.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 351 -

sgx_fseek is similar to the C file API fseek.

For more details about this API and its parameters, check the fseek doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_feof

The sgx_feof function tells the caller if the file's position indicator hit the
end of the file in a previous read operation.

Syntax

int32_t sgx_feof(

SGX_FILE* stream
);

Parameters

stream [in]

A file handle that was returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

0

End of file was not reached.

1

End of file was reached.

Description

sgx_feof is similar to the C file API feof.

For more details about this API and its parameters, check the feof doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 352 -

sgx_ferror

The sgx_ferror function returns the latest operation error code.

Syntax

int32_t sgx_ferror(

SGX_FILE* stream
);

Parameters

stream [in]

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

The latest operation error code is returned. 0 indicates that no errors
occurred.

Description

sgx_ferror is similar to the C file API ferror. In case the latest operation
failed because the file is in a bad state, SGX_ERROR_FILE_BAD_STATUS will
be returned.

For more details about this API and its parameters, check the ferror doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_clearerr

The sgx_clearerr function attempts to repair a bad file status, and also
clears the end-of-file flag.

Syntax

void sgx_clearerr(

SGX_FILE* stream
);

Parameters

stream [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 353 -

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

None

Description

sgx_clearerr is similar to the C file API clearerr. This function attempts
to repair errors resulted from the underlying file system, like write errors to
the disk (resulting in a full cache that cannot be emptied). Call sgx_ferror
or sgx_feof after a call to this function to learn if it was successful or not.

sgx_clearerr does not repair errors resulting from a corrupted file, like
decryption errors, or from memory corruption, etc.

For more details about this API and its parameters, check the clearerr doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_remove

The sgx_remove function deletes a file from the file system.

Syntax

int32_t sgx_remove(

const char* filename,
);

Parameters

filename [in]

The name of the file to delete.

Return value

0

The operation completed successfully.

1

An error occurred, check errno for the error code.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 354 -

sgx_remove is similar to the C file API remove.

For more details about this API and its parameters, check the remove doc-
umentation.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fexport_auto_key

The sgx_fexport_auto_key function is used for exporting the latest key
used for the file encryption. See File Transfer with the Automatic Keys API for
more details.

Syntax

int32_t sgx_fexport_auto_key(

const char* filename,
sgx_key_128bit_t *key

);

Parameters

filename [in]

The name of the file to be exported. This should be the name of a file created
with the sgx_fopen_auto_key API.

key [out]

The latest encryption key.

Return value

0

The operation completed successfully.

1

An error occurred, check errno for the error code.

Description

sgx_fexport_auto_key is used to export the last key that was used in the
encryption of the file. With this key you can import the file in a different
enclave or system.

NOTE:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 355 -

1. In order for this function to work, the file should not be opened in any
other process.

2. This function only works with files created with sgx_fopen_auto_key.

See File Transfer with the Automatic Keys API for more details.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fimport_auto_key

The sgx_fimport_auto_key function is used for importing a Protected FS
auto key file created on a different enclave or platform. See File Transfer with
the Automatic Keys API for more details.

Syntax

int32_t sgx_fimport_auto_key(

const char* filename,
const sgx_key_128bit_t *key

);

Parameters

filename [in]

The name of the file to be imported. This should be the name of a file created
with the sgx_fopen_auto_key API, on a different enclave or system.

key [in]

The encryption key, exported with a call to sgx_fexport_auto_key in the
source enclave or system.

Return value

0

The operation completed successfully.

1

An error occurred, check errno for the error code.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 356 -

sgx_fimport_auto_key is used for importing a Protected FS file. After this
call returns successfully, the file can be opened normally with sgx_fexport_
auto_key.

NOTE:

1. In order for this function to work, the file should not be opened in any
other process.

2. This function only works with files created with sgx_fopen_auto_key.

See File Transfer with the Automatic Keys API for more details.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_fclear_cache

The sgx_fclear_cache function is used for clearing the internal file cache.
The function scrubs all the data from the cache, and releases all the allocated
cache memory.

Syntax

int32_t sgx_fclear_cache(

SGX_FILE* stream
);

Parameters

stream [in]

A file handle that is returned from a previous call to sgx_fopen or sgx_
fopen_auto_key.

Return value

0

The operation completed successfully.

1

An error occurred, call sgx_ferror to get the error code.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 357 -

sgx_fclear_cache is used to scrub all the data from the cache and release
all the allocated cache memory. If modified data is found in the cache, it will
be written to the file on disk before being scrubbed.

This function is especially useful if you do not trust parts of your own enclave
(for example, external libraries you linked against, etc.) and want to make sure
there is as little sensitive data in the memory as possible before transferring
control to the code they do not trust. Note, however, that the SGX_FILE struc-
ture itself still holds sensitive data. To remove all such data related to the file
from memory completely, you should close the file handle.

Requirements

Header sgx_tprotected_fs.h sgx_tprotected_fs.edl

Library libsgx_tprotected_fs.a

sgx_ecc256_calculate_pub_from_priv

Generates an ECC public key based on a given ECC private key.

Syntax

sgx_ecc256_calculate_pub_from_priv(

const sgx_ec256_private_t *p_att_priv_key,
sgx_ec256_public_t *p_att_pub_key

);

Parameters

p_att_priv_key [in]

Pointer to the input ECC private key.

p_att_pub_key [out]

Pointer to output public key - LITTLE ENDIAN.

Return value

SGX_SUCCESS

All outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

One or more of input parameters is invalid.

SGX_ERROR_OUT_OF_MEMORY

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 358 -

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

This function retrieves an ECC public key from a given private key on curve
NID_X9_62_prime256v1. (pub = priv * curve_group).

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_ecdsa_verify_hash

Directly verifies the signature for the given data of size SGX_SHA256_HASH_
SIZE based on the public key.

Syntax

sgx_status_t sgx_ecdsa_verify_hash(

const uint8_t *p_data,
uint32_t data_size,
const sgx_ec256_public_t *p_public,
const sgx_ec256_signature_t *p_signature,
uint8_t *p_result,
sgx_ecc_state_handle_t ecc_handle

);

Parameters

p_data [in]

Pointer to the signed dataset of size SGX_SHA256_HASH_SIZE to be verified.

p_public [in]

Pointer to the public key to be used for the signature calculation.

NOTE:
Value is LITTLE ENDIAN.

p_signature [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 359 -

Pointer to the signature to be verified.

NOTE:
Value is LITTLE ENDIAN.

p_result [out]

Pointer to the result of the verification check populated by this function.

ecc_handle [in]

Handle of the allocated and initialized ECC GF(p) context state used to call
standard functions of the elliptic curve cryptosystem. The algorithm stores
intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only supports a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

Digital signature verification is performed successfully. Check p_result to get
the verification result.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, public key, data, result, or signature pointer is NULL,
or the data size is 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Verification process failed due to an internal cryptography library eror.

Description

This function verifies the signature for the given data set based on the input
public key. The function performs verification without calculating the data
hash.

A digital signature of the message consists of a pair of large numbers, 256 bits
each, which could be created by sgx_ecdsa_sign. The ECDSA scheme, an
elliptic curve of the DSA scheme, is used for computing a digital signature.

The digital signature verification results in one of the following values:

SGX_EC_VALID - Digital signature is valid.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 360 -

SGX_EC_INVALID_SIGNATURE - Digital signature is not valid.

To create elliptic curve domain parameters, use the sgx_ecc256_open_
context function.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_hmac_sha256_msg

Computes a message authentication code of p_src using the hash function
SHA256 and p_key.

Syntax

sgx_status_t sgx_hmac_sha256_msg(

const unsigned char *p_src,
int src_len,
const unsigned char *p_key,
int key_len,
unsigned char *p_mac,
int mac_len

);

Parameters

p_src [in]

Pointer to the input stream to be hashed.

src_len [in]

Length in bytes of the input stream to be hashed.

p_key [in]

Pointer to the key to be used in MAC operation.

key_len [in]

Key length, in bytes.

p_mac [out]

Pointer to the result MAC, must be allocated by the caller.

mac_len [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 361 -

Expected output MAC length, in bytes.

Return value

SGX_SUCCESS

All outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

p_src, p_key, or p_mac pointer is NULL.

src_len, key_len, or mac_len size is less than or equal to 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

The function performs a standard HMAC hash over the input data buffer. Only
a 256-bit version of the HMAC hash is supported.

Use this function if the complete input data stream is available. Otherwise, use
the Init, Update… Update, Final procedure to compute the HMAC hash over
multiple input data sets.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_hmac256_init

Allocates and initializes the HMAC state to use p_key.

Syntax

sgx_status_t sgx_hmac256_init(

const unsigned char *p_key,
int key_len,
sgx_hmac_state_handle_t *p_hmac_handle

);

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 362 -

Parameters

p_key [in]

Pointer to the key used in the message authentication operation.

key_len [in]

Key length, in bytes.

p_hmac_handle [out]

Pointer to the output HMAC state handle.

Return value

SGX_SUCCESS

All outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

p_key or p_hmac_handle is NULL, or key_len is less than or equal to 0.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

Calling sgx_hmac256_init is the first set in performing the HMAC 256-bit
hash over multiple data sets. Do not allocate memory for the HMAC state
returned by this function. The state is specific to the implementation of the
cryptography library, so the library performs the allocation itself. If the hash
over the desired data sets is completed or any error occurs during the hash
calculation process, call sgx_hmac256_close to free the state allocated by this
algorithm.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 363 -

sgx_hmac256_update

Authenticates chunks of a message during repetitive calls.

Syntax

sgx_status_t sgx_hmac256_update(

const uint8_t *p_src,
int src_len,
sgx_hmac_state_handle_t hmac_handle

);

Parameters

p_src [in]

Pointer to the input stream to be hashed.

src_len [in]

Length in bytes of the input stream to be hashed.

p_hmac_handle [in]

Pointer to the HMAC state handle.

Return value

SGX_SUCCESS

All outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

p_src or p_hmac_handle is NULL, or src_len is less than or equal to 0.

SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

Use this functions as a part of an HMAC 256-bit hash calculation over multiple
data sets. For the HMAC hash calculation over a single data set, use the sgx_
hmac_sha256_msg function instead. Before calling this function on the first
data set, allocate and initialize the HMAC state structure, which will hold inter-
mediate hash results, using the sgx_hmac256_init function. To obtain the

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 364 -

hash after processing the final data set, call the sgx_hmac256_final func-
tion.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_hmac256_final

Places the message authentication code in p_hash.

Syntax

sgx_status_t sgx_hmac256_final(

unsigned char *p_hash,
int hash_len,
sgx_hmac_state_handle_t hmac_handle

);

Parameters

hash_len [in]

Expected MAC length, in bytes.

hmac_handle [in]

Pointer to the HMAC state handle.

p_hash [out]

Pointer to the resultant hash from the HMAC operation. This buffer should be
allocated by the calling code.

Return value

SGX_SUCCESS

All outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

p_hash or hmac_handle is NULL, or hash_len is less than or equal to 0.

SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 365 -

Description

This function returns the hash after performing the HMAC 256-bit hash cal-
culation over one or more data sets using the sgx_hmac256_update func-
tion. Memory for the hash should be allocated by the calling code. The handle
to the HMAC state used in the sgx_hmac256_update calls must be passed
as input.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_hmac256_close

Cleans up the HMAC state.

Syntax

sgx_status_t sgx_hmac256_close(

sgx_hmac_state_handle_t hmac_handle
);

Parameters

p_hmac_handle [in]

Pointer to the HMAC state handle.

Return value

SGX_SUCCESS

HMAC state is cleaned up successfull.

SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 366 -

Calling sgx_hmac256_close is the last step after performing the HMAC
hash over multiple data sets. Use this function to clean and deallocate memory
used for storing the HMAC algorithm context state.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_aes_gcm128_enc_init

Returns an allocated and initialized AES-GCM encrypt algorithm context state.
This should be part of the Init, Update … Update, Final process when the AES-
GCM encryption is to be performed over multiple datasets. If a complete data-
set is available, you should call sgx_rijndael128GCM_encrypt to perform
the encryption in a single call.

Syntax

sgx_status_t sgx_aes_gcm128_enc_init(

const uint8_t *key,
const uint8_t *iv,
uint32_t iv_len,
const uint8_t *aad,
uint32_t aad_len,
sgx_aes_state_handle_t* aes_gcm_state

);

Parameters

key [in]

Pointer to key to be used in the AES-GCM encryption operation. The size must
be 128 bits.

iv [in]

Pointer to the initialization vector to be used in the AES-GCM calculation. NIST
AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

Specifies the length of the input initialization vector. The length should be 12
as recommended by NIST.

aad [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 367 -

Pointer to the additional authentication data buffer used in the GCM MAC cal-
culation. The data in this buffer will not be encrypted. The field is optional and
could be NULL.

aad_len [in]

Specifies the length of the additional authentication data buffer. This buffer is
optional and the size can be zero.

aes_gcm_state [out]

Handle to the context state used by the cryptography library to perform an
iterative AES-GCM 128-bit encryption. The algorithm stores the intermediate
results of performing the encryption over data sets.

Return value

SGX_SUCCESS

The AES-GCM encryption state is successfully allocated and initialized.

SGX_ERROR_INVALID_PARAMETER

If key, MAC, or IV pointer is NULL.

If AAD size is > 0 and the AAD pointer is NULL.

The key or handle pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

Internal cryptography library failure occurred.

Description

Call sgx_aes_gcm128_enc_init as the first step in performing the AES-
GCM encrypt over multiple datasets. Do not allocate memory for the AES-GCM
state that this function returns. The state is specific to the implementation of
the cryptography library and thus the allocation is performed by the library
itself. If the encryption over the desired datasets is completed or any error
occurs during the encryption process, call sgx_aes_gcm_close to free the
state allocated by this algorithm.

Requirements

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 368 -

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_aes_gcm128_enc_update

Performs AES-GCM 128-bit encryption over the input dataset provided. This
function supports an iterative encryption over multiple datasets where aes_
gcm_handle contains the intermediate results of the encryption over pre-
vious datasets.

Syntax

sgx_status_t sgx_aes_gcm128_enc_update(

uint8_t *p_src,
uint32_t src_len,
uint8_t *p_dst,
sgx_aes_state_handle_t aes_gcm_state

);

Parameters

p_src [in]

Pointer to the input data stream to be encrypted.

src_len [in]

Specifies the length on the input data stream to be encrypted.

p_dst [out]

Pointer to the output cipher-text buffer.

aes_gcm_state [in]

Handle to the context state used by the cryptography library to perform AES-
GCM encryption.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

The source pointer, destination pointer, or AES handle is NULL.

The source length is 0 or greater than INT_MAX.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 369 -

SGX_ERROR_UNEXPECTED

Internal cryptography library failure occurred while performing the AES-GCM
encryption.

NOTE:
Unexpected errors indicate that the AES-GCM state is not freed. Call sgx_
aes_gcm_close to free the AES-GCM state and avoid memory leak.

Description

This function encrypts data in the source input and puts it in p_dst. You
should use it after initializing the AES-GCM state with sgx_aes_gcm128_
enc_init.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_aes_gcm128_enc_get_mac

Obtains the authentication MAC from the given AES-GCM state.

Syntax

sgx_status_t sgx_aes_gcm128_enc_get_mac(

uint8_t *mac,
sgx_aes_state_handle_t aes_gcm_state

);

Parameters

aes_gcm_state [in]

Handle to the context state used by the cryptography library performing an
iterative AES-GCM encryption.

mac [out]

Pointer to SGX_AESGCM_MAC_SIZE buffer to store MAC. The memory for the
MAC should be allocated by the calling code.

Return value

SGX_SUCCESS

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 370 -

The MAC is obtained successfully.

SGX_ERROR_INVALID_PARAMETER

The MAC pointer or AES-GCM handle is NULL.

SGX_ERROR_UNEXPECTED

Internal cryptography library failure occurred while performing the AES-GCM
encryption.

NOTE:
If an unexpected error occurs, call sgx_aes_gcm_close to free the AES-
GCM state to avoid memory leak.

Description

Writes SGX_AESGCM_MAC_SIZE bytes of the tag value to the buffer indicated
by MAC.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_aes_gcm_close

Cleans up and frees the AES-GCM state.

Syntax

sgx_status_t sgx_aes_gcm_close(

sgx_aes_state_handle_t aes_gcm_state
);

Parameters

aes_gcm_state [in]

Pointer to the AES-GCM state handle.

Return value

SGX_SUCCESS

The AES-GCM state was deallocated successfully.

SGX_ERROR_UNEXPECTED

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 371 -

Internal cryptography library failure occurred.

Description

Call sgx_aes_gcm_close as the last step after performing AES-GCM over
multiple datasets. Use this function to clean and deallocate the memory used
for storing the AES-GCM algorithm context state.

Requirements

Header sgx_tcrypto.h

Library libsgx_tcrypto.a

sgx_get_rsrv_mem_info

Get the start address and/or the max size info for the reserved memory area

Syntax

sgx_status_t sgx_get_rsrv_mem_info(

void **addr, size_t* max_size
);

Parameters

addr [out]

The starting address of the reserved memory.

max_size [out]

The maximum size of the reserved memory.

Return value

SGX_SUCCESS

The reserved memory information is returned.

SGX_ERROR_INVALID_PARAMETER

One of the input parameters is invalid.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 372 -

Description

sgx_get_rsrv_mem_info can be used to query the reserved memory area
information, such as the starting address and the maximum size. The addr
and max_size are not allowed to be NULL at the same time.

Requirements

Header sgx_rsrv_mem_mngr.h
Library libsgx_tstdc.a

sgx_alloc_rsrv_mem_ex

Allocate a range of EPC memory with a fixed address from the reserved
memory area

Syntax

void* sgx_alloc_rsrv_mem_ex(

void *desired_addr, size_t length
);

Parameters

desired_addr [in]

The desired starting address to allocate the reserved memory. Should be
page aligned.

length [in]

The length of region to be allocated in bytes. Should be page aligned.

Return value

On success, sgx_alloc_rsrv_mem_ex returns a pointer with the desired starting
address to the reserved memory region. Otherwise, returns NULL to indicate
allocation failure.

Description

sgx_alloc_rsrv_mem_ex allocates a block of length bytes of EPC
memory with a desired starting address from reserved memory area. The

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 373 -

desired_addr and length should be page aligned. Used when it needs to
allocate a memory from a specific address from reserved memory area. If the
starting address doesn't matter, please use sgx_alloc_rsrv_mem instead.

On success, a pointer to the memory is returned. On Intel(R) SGX 2.0 the initial
permission for the allocated memory is RW, while on Intel(R) SGX 1.0 it
depends on the ReservedMemExecutable flag in the Enclave Configuration
File. If this flag is set, the allocated memory would be granted with RWX per-
mission. Otherwise, the granted permission is RW.

After completion of the reserved memory operation, it needs to call sgx_
free_rsrv_mem function to deallocate the memory resource.

Requirements

Header sgx_rsrv_mem_mngr.h
Library libsgx_tstdc.a

sgx_alloc_rsrv_mem

Allocate a range of EPC memory from the reserved memory area

Syntax

sgx_status_t sgx_alloc_rsrv_mem(

size_t length
);

Parameters

length [in]

The memory length to be manipulated in bytes. Should be page aligned.

Return value

On success, sgx_alloc_rsrv_mem returns a pointer to the reserved
memory region. Otherwise, returns NULL to indicate allocation failure.

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 374 -

sgx_alloc_rsrv_mem allocates a block of length bytes of EPC memory
from reserved memory area. The length should be page aligned. Used when
the starting address doesn't matter.

On success, a memory pointer is returned. On Intel(R) SGX 2.0 the initial per-
mission for the allocated memory is RW, while on Intel(R) SGX 1.0 it depends
on the ReservedMemExecutable flag in the Enclave Configuration File. If
this flag is set, the allocated memory would be granted with RWX permission.
Otherwise, the granted permission is RW.

After completion of the reserved memory operation, it needs to call sgx_
free_rsrv_mem function to deallocate the memory resource.

Requirements

Header sgx_rsrv_mem_mngr.h
Library libsgx_tstdc.a

sgx_free_rsrv_mem

Deallocate a range of EPC memory from the reserved memory area

Syntax

sgx_status_t sgx_free_rsrv_mem(

void *addr, size_t length
);

Parameters

addr [in]

The starting address of region that would be freed. Should be page aligned.

length [in]

The length of the memory to be manipulated in bytes. Should be page
aligned.

Return value

0

The EPC memory is freed successfully.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 375 -

-1

The operation is failed.

Description

sgx_free_rsrv_mem is used to deallocate the memory from the reserved
memory area allocated by the following functions:

sgx_alloc_rsrv_mem

sgx_alloc_rsrv_mem_ex

The input addr and length should be page aligned.

Requirements

Header sgx_rsrv_mem_mngr.h
Library libsgx_tstdc.a

sgx_tprotect_rsrv_mem

Modify the access permissions of the pages in the reserved memory area.

Syntax

sgx_status_t sgx_tprotect_rsrv_mem(

void *addr, size_t length, int prot
);

Parameters

addr [in]

The starting address of region which needs to change access permission.
Should be page aligned.

length [in]

The length of the memory to be manipulated in bytes. Should be page
aligned.

prot [in]

The target memory protection.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 376 -

Return value

SGX_SUCCESS

The permission is set to the target memory protection.

SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory to complete this operation.

SGX_ERROR_UNEXPECTED

Unexpected failure occurred.

Description

sgx_tprotect_rsrv_mem function sets the protection prot for the target
reserved memory [addr, addr+length-1] similar to the system API
mprotect. The addr and length should be page aligned.

prot is a combination of the following access flags: SGX_PROT_NONE or a bit-
wise-or of the other values of the following list.

SGX_PROT_NONE The memory cannot be accessed at all.
SGX_PROT_READ The memory can be read.
SGX_PROT_WRITE The memory can be modified.
SGX_PROT_EXEC The memory can be executed.

NOTE:
This function is workable only on the Intel(R) SGX 2.0 enabled platform. For
Intel(R) SGX 1.0 this function doesn't actually change any permission but per-
form a sanity check.

Requirements

Header sgx_rsrv_mem_mngr.h
Library libsgx_tstdc.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 377 -

tee_get_certificate_with_evidence

tee_get_certificate_with_evidence generates a self-signed X.509
certificate with embeded Intel® SGX ECDSA quote.

Syntax

quote3_error_t SGXAPI tee_get_certificate_with_evidence(

const unsigned char *p_subject_name,

const uint8_t *p_prv_key,

size_t private_key_size,

const uint8_t *p_pub_key,

size_t public_key_size,

uint8_t **pp_output_cert,

size_t *p_output_cert_size

);

Parameters

p_subject_name [in]

A string containing an X.509 distinguished name (DN)
 for customizing the generated certificate. This name is also used
as the issuer name for this self-signed certificate See RFC5280 (https://tools.i-
etf.org/html/rfc5280) for details.

Example value "CN=Intel SGX Enclave,O=Intel Corporation,C=US"

p_prv_key [in]

A private key used to sign this certificate in PEM format

private_key_size [in]

The size of the private_key in bytes

p_pub_key [in]

A public key used as the certificate's subject key in PEM format

public_key_size [in]

The size of the public key in bytes

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 378 -

pp_output_cert [out]

A pointer to output certificate pointer

p_output_cert_size [out]

A pointer to the size of the output certificate above

Return value

SGX_QL_SUCCESS

All of the outputs are generated successfully.

SGX_QL_ERROR_INVALID_PARAMETER

Any of the parameters are invalid

SGX_QL_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_QL_ATT_KEY_NOT_INITIALIZED

The platform quoting infrastructure does not have the attestation key avail-
able to generate quotes. sgx_qe_get_target_info() must be called again

SGX_QL_ATT_KEY_CERT_DATA_INVALID

The data returned by the platform library's sgx_ql_get_quote_config() is
invalid

SGX_QL_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation

SGX_QL_ENCLAVE_LOST

Enclave lost after power transition or used in child process created by linux:-
fork()

SGX_QL_ENCLAVE_LOAD_ERROR

Unable to load the enclaves required to initialize the attestation key. Could be
due to file I/O error, loading infrastructure error or insufficient enclave
memory

SGX_QL_ERROR_UNEXPECTED

An unexpected error was detected

Description

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 379 -

Calling tee_get_certificate_with_evidence generates a self-signed
X.509 certificate with embedded Intel® SGX ECDSA quote. This API depends
on Intel® SGX DCAP remote attestation.Review DCAP requirement before
using this API.

Requirements

Header sgx_ttls.h, sgx_ttls.edl
Library libsgx_ttls.a

tee_free_certificate

tee_free_evidence frees the output X.509 certificate buffer which gen-
erate by API tee_get_certificate_with_evidence_in_enclave

Syntax

quote3_error_t SGXAPI tee_free_evidence(

uint8_t* p_certificate

);

Parameters

p_certificate [in]

A pointer to output certificate buffer after called API tee_get_cer-
tificate_with_evidence

Return value

SGX_QL_SUCCESS

All of the outputs are generated successfully.

SGX_QL_ERROR_INVALID_PARAMETER

Any of the parameters are invalid.

SGX_QL_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_QL_ERROR_UNEXPECTED

An unexpected error was detected

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 380 -

Requirements

Header sgx_ttls.h, sgx_ttls.edl
Library libsgx_ttls.a

tee_verify_certificate_with_evidence

tee_verify_certificate_with_evidence performs Intel® SGX quote
and X.509 certificate verification inside an SGX enclave. The validation
includes extracting quote extension from the certificate before validating the
quote.

Syntax

quote3_error_t SGXAPI tee_verify_certificate_with_evid-
ence(

const uint8_t *p_cert_in_der,

size_t cert_in_der_len,

const time_t expiration_check_date,

sgx_ql_qv_result_t *p_qv_result,

uint8_t **pp_supplemental_data,

uint32_t *p_supplemental_data_size

);

Parameters

p_cert_in_der [in]

A pointer to buffer holding certificate contents in DER format

in_der_len [in]

The size of certificate buffer above

expiration_check_date [in]

The date that verifier will use to determine if any of the verification collateral
have expired

p_qv_result [in]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 381 -

Quote verification result

pp_supplemental_data [out]

Optional input, a pointer to SGX quote verification supplemental data pointer

p_supplemental_data_size [out]

Optional input, the size of supplemental data above, only valid when you
provide 'pp_supplemental_data'

Return value

SGX_QL_SUCCESS

Both X.509 certificate and quote verification passed,

But you can still refer to output parameters 'p_qv_result' for some non-critical
errors, you can refer to 'p_qv_result' and supplemental data to define your
own quote verification policy

SGX_QL_ERROR_INVALID_PARAMETER

Any of the parameters are invalid

SGX_QL_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_QL_ERROR_UNEXPECTED

An unexpected error was detected.

Description

tee_verify_certificate_with_evidence extracts the quote from
self-signed X.509 certificate, then calls Intel® ECDSA quote verification library
and enclave to verify the quote. In addition, this API calls SgxSSL to verify the
X.509 certificate.

Note that ifthis API returns success, it only means there was no critical error
during quote verification. You should still refer to output 'p_qv_result' and 'p_
supplemental_data' to check for warningssuch as verification collateral out of
date warning. It is suggested to define your verification policy based the out-
put or pass the output to relying party for further verification.

Requirements

Header sgx_ttls.h, sgx_ttls.edl
Library libsgx_ttls.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 382 -

tee_free_supplemental_data

tee_free_supplemental_data frees the quote verification supplemental
data buffer, which is an output of the tee_verify_certificate_with_
evidenceAPI.

Note that this API should be called only when you askquote verification sup-
plemental data in the tee_verify_certificate_with_evidenceAPI.

Syntax

quote3_error_t SGXAPI tee_free_supplemental_data(

uint8_t* p_supplemental_data

);

Parameters

p_supplemental_data [in]

A pointer to quote verification supplemental data, which is an output of the
tee_verify_certificate_with_evidenceAPI.

Return value

SGX_QL_SUCCESS

All of the outputs are generated successfully.

SGX_QL_ERROR_INVALID_PARAMETER

Any of the parameters are invalid.

SGX_QL_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_QL_ERROR_UNEXPECTED

An unexpected error was detected

Requirements

Header sgx_ttls.h, sgx_ttls.edl
Library libsgx_ttls.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 383 -

tee_verify_certificate_with_evidence_host

tee_verify_certificate_with_evidence_host performs Intel® SGX
quote and X.509 certificate verification in host side. The validation includes
extracting quote extension from the certificate before validating the quote.

Note that the verification is not performed inside an SGX enclave. This API
calls Intel® SGX QVL (Quote Verification Library) to verify quote, QvE (Quote
Verification Enclave) is not involved. Before using this API, make sure the veri-
fication environment is secure.

Syntax

quote3_error_t SGXAPI tee_verify_certificate_with_evid-
ence_host(

const uint8_t *p_cert_in_der,

size_t cert_in_der_len,

const time_t expiration_check_date,

sgx_ql_qv_result_t *p_qv_result,

uint8_t **pp_supplemental_data,

uint32_t *p_supplemental_data_size

);

Parameters

p_cert_in_der [in]

A pointer to buffer holding certificate contents in DER format

in_der_len [in]

The size of certificate buffer above

expiration_check_date [in]

The date that verifier will use to determine if any of the verification collateral
have expired

p_qv_result [in]

Quote verification result

pp_supplemental_data [out]

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 384 -

Optional input, a pointer to SGX quote verification supplemental data pointer

p_supplemental_data_size [out]

Optional input, the size of supplemental data above, only valid when you
provide 'pp_supplemental_data'

Return value

SGX_QL_SUCCESS

Both X.509 certificate and quote verification passed,

But you can still refer to output parameters 'p_qv_result' for some non-critical
errors, you can refer to 'p_qv_result' and supplemental data to define your
own quote verification policy

SGX_QL_ERROR_INVALID_PARAMETER

Any of the parameters are invalid

SGX_QL_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_QL_ERROR_UNEXPECTED

An unexpected error was detected.

Description

tee_verify_certificate_with_evidence_host extracts the quote
from a self-signed X.509 certificate, then calls Intel® ECDSA quote verification
library to verify the quote. In addition, this API calls OpenSSL to verify the
X.509 certificate.

Note that if this API returns success, it only means there was no critical error
during quote verification. You should still refer to output 'p_qv_result' and 'p_
supplemental_data' to check for warnings such as verification collateral out of
date warning. It is suggested to define your verification policy based the out-
put or pass the output to relying party for further verification.

Requirements

Header sgx_utls.h
Library libsgx_utls.a

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 385 -

tee_free_supplemental_data_host

tee_free_supplemental_data_host frees the quote verification sup-
plemental data buffer, which is an output of the tee_verify_cer-
tificate_with_evidence_hostAPI.

Note that this API should be called only when you asked quote verification sup-
plemental data in the tee_verify_certificate_with_evidence_
hostAPI.

Syntax

quote3_error_t SGXAPI tee_free_supplemental_data_host(

uint8_t* p_supplemental_data

);

Parameters

p_supplemental_data [in]

A pointer to quote verification supplemental data, which is output of the tee_
verify_certificate_with_evidence_hostAPI.

Return value

SGX_QL_SUCCESS

All of the outputs are generated successfully.

SGX_QL_ERROR_INVALID_PARAMETER

Any of the parameters are invalid.

SGX_QL_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation

SGX_QL_ERROR_UNEXPECTED

An unexpected error was detected

Requirements

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 386 -

Header sgx_utls.h
Library libsgx_utls.a

Types and Enumerations
This topic introduces the types and error codes in the following topics:

l Type Descriptions

l Error Codes

Type Descriptions
This topic section describes the following data types provided by the Intel®
SGX:

l sgx_enclave_id_t

l sgx_status_t

l sgx_launch_token_t

l sgx_exception_vector_t

l sgx_exception_type_t

l sgx_cpu_context_t

l sgx_exception_info_t

l sgx_exception_handler_t

l sgx_spinlock_t

l sgx_thread_t

l sgx_thread_mutex_t

l sgx_thread_mutexattr_t

l sgx_thread_rwlock_t

l sgx_thread_rwlockattr_t

l sgx_thread_cond_t

l sgx_thread_condattr_t

l sgx_misc_select_t

l sgx_attributes_t

l sgx_misc_attribute_t

l sgx_isv_svn_t

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 387 -

l sgx_cpu_svn_t

l sgx_key_id_t

l sgx_key_128bit_t

l sgx_key_request_t

l sgx_measurement_t

l sgx_mac_t

l sgx_report_data_t

l sgx_prod_id_t

l sgx_target_info_t

l sgx_report_body_t

l sgx_report_t

l sgx_aes_gcm_data_t

l sgx_sealed_data_t

l sgx_epid_group_id_t

l sgx_basename_t

l sgx_quote_t

l sgx_quote_sign_type_t

l sgx_spid_t

l sgx_quote_nonce_t

l sgx_att_key_id_t

l sgx_ql_att_key_id_t

l sgx_att_key_id_ext_t

l sgx_qe_report_info_t

l sgx_ra_context_t

l sgx_ra_key_128_t

l sgx_ra_key_type_t

l sgx_ra_msg1_t

l sgx_ra_msg2_t

l sgx_ra_msg3_t

l sgx_ecall_get_ga_trusted_t

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 388 -

l sgx_ecall_get_msg3_trusted_t

l sgx_ecall_proc_msg2_trusted_t

l sgx_platform_info_t

l sgx_update_info_bit_t

l sgx_dh_msg1_t

l sgx_dh_msg2_t

l sgx_dh_msg3_t

l sgx_dh_msg3_body_t

l sgx_dh_session_enclave_identity_t

l sgx_dh_session_role_t

l sgx_dh_session_t

l class template custom_alignment_aligned

sgx_enclave_id_t

An enclave ID, also referred to as an enclave handle. Used as a handle to an
enclave by various functions.

Enclave IDs are locally unique, i.e. within the platform, and the uniqueness is
guaranteed until the next machine restart.

Syntax

typedef uint64_t sgx_enclave_id_t;

Requirements

Header sgx_eid.h

sgx_status_t

Specifies the return status from an Intel SGX function call. For a list containing
all possible values of this data type, see Error Codes.

Syntax

typedef enum _status_t { . . . } sgx_status_t;

Requirements

Header sgx_error.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 389 -

sgx_launch_token_t

An opaque type used to hold enclave launch information. Used by sgx_create_
enclave to initialize an enclave. The license is generated by the Launch
Enclave.

See more details in Loading and Unloading an Enclave.

Syntax

typedef uint8_t sgx_launch_token_t[1024];

Requirements

Header sgx_urts.h

sgx_uswitchless_worker_type_t

Defines Switchless Calls worker thread type, trusted or untrusted. A worker
can be either trusted (executed inside enclave) or untrusted (executed out-
side enclave).

Syntax

typedef enum {

SGX_USWITCHLESS_WORKER_TYPE_UNTRUSTED,
SGX_USWITCHLESS_WORKER_TYPE_TRUSTED

} sgx_uswitchless_worker_type_t;

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_worker_event_t

An application may register a callback to receive Switchless Calls events. The
most useful information is presented by 4 worker events: a worker thread
starts, a worker thread is idle , a worker thread missed some tasks, a worker
thread exits.

Syntax

typedef enum {

SGX_USWITCHLESS_WORKER_EVENT_START,
SGX_USWITCHLESS_WORKER_EVENT_IDLE,
SGX_USWITCHLESS_WORKER_EVENT_MISS,
SGX_USWITCHLESS_WORKER_EVENT_EXIT,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 390 -

_SGX_USWITCHLESS_WORKER_EVENT_NUM,
} sgx_uswitchless_worker_event_t;

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_worker_stats_t

Switchless Calls gather statistics of calls processed by worker threads, and
calls missed by worker threads and handled using fallback to regular
ECALLs/OCALLs . An application can access the statistics values if it is
registered to callbacks.

Syntax

typedef struct {

uint64_t processed;
uint64_t missed;

} sgx_uswitchless_worker_stats_t;

Members

processed

64-bit counter that counts the number of tasks that all workers have pro-
cessed.

missed

64-bit counter that counts the number of tasks that all workers have missed.

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_worker_callback_t

Callback function that is called upon worker threads events and can be used
to collect feature statistics and detect feature behavior for configuration tun-
ing or other needs.

Syntax

typedef void (*sgx_uswitchless_worker_callback_t) (

sgx_uswitchless_worker_type_t type,

sgx_uswitchless_worker_event_t event,

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 391 -

const sgx_uswitchless_worker_stats_t* stats);

Parameters

type

Worker thread type .

event

Type of the event occurred.

stats

Pointer to statistics data.

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_config_t

Switchless Calls configuration structure passed to sgx_create_enclave_
ex to select feature configuration.

Syntax

typedef struct

{

uint32_t switchless_calls_pool_size_qwords;
uint32_t num_uworkers;
uint32_t num_tworkers;
uint32_t retries_before_fallback;
uint32_t retries_before_sleep;
sgx_uswitchless_worker_callback_t
callback_func[_SGX_USWITCHLESS_WORKER_EVENT_NUM];

} sgx_uswitchless_config_t;

Members

switchless_calls_pool_size_qwords

Size of the Switchless Calls task pool (1 indicates a task pool of 64 tasks).

Default value: 1 (64 tasks)

Max value: 8 (512 tasks)

#define SL_DEFUALT_MAX_TASKS_QWORDS 1 //64

#define SL_MAX_TASKS_MAX_QWORDS 8 //512

num_uworkers

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 392 -

Number of untrusted worker threads that serve Switchless OCALLs.

num_tworkers

Number of trusted worker threads that serve Switchless ECALLs. This number
is limited by TCSNum defined in an enclave configuration file. Exceeding the
number of available TCS prevents several trusted worker threads from enter-
ing the enclave.

retries_before_fallback

Number of retries client threads wait (assembly pause) for a worker thread to
start executing a Switchless Call before falling back to a regular ECALL/OCALL.

Default value: 20000

#define SL_DEFAULT_FALLBACK_RETRIES 20000

retries_before_sleep

Number of retries worker threads wait (assembly pause) on the Task Pool for
an incoming Switchless Call request before the worker thread goes to sleep .

Default value: 20000

#define SL_DEFAULT_SLEEP_RETRIES 20000

Callback_func

Array of 4 callback functions for all event types. Optional, default value: NULL.

Default Initialization

At least one of num_uworkers or num_tworkers must not be 0. If both are
0, sgx_create_enclave_ex will return an error.

Other fields passed as 0 are replaced with the default field value.

A macro with default values provided.

#define SGX_USWITCHLESS_CONFIG_INITIALIZER {0, 1, 1, 0,
0, { 0 } }

It will be translated to {1, 1, 1, 20000, 20000, { 0 } }

Requirements

Header sgx_uswitchless.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 393 -

sgx_exception_vector_t

The sgx_exception_vector_t enumeration contains the enclave sup-
ported exception vectors. If the exception vector is #BP, the exception type is
SGX_EXCEPTION_SOFTWARE; otherwise, the exception type is SGX_
EXCEPTION_HARDWARE.

Syntax

typedef enum _sgx_exception_vector_t

{

SGX_EXCEPTION_VECTOR_DE = 0, /* DIV and DIV instructions */
SGX_EXCEPTION_VECTOR_DB = 1, /* For Intel use only */
SGX_EXCEPTION_VECTOR_BP = 3, /* INT 3 instruction */
SGX_EXCEPTION_VECTOR_BR = 5, /* BOUND instruction */
SGX_EXCEPTION_VECTOR_UD = 6, /* UD2 instruction or reserved
opcode */
SGX_EXCEPTION_VECTOR_MF = 16, /* x87 FPU floating-point or
WAIT/FWAI instruction. */
SGX_EXCEPTION_VECTOR_AC = 17, /* Any data reference in memory */
SGX_EXCEPTION_VECTOR_XM = 19, /* SSE/SSE2/SSE3 instruction */

} sgx_exception_vector_t;

Requirements

Header sgx_trts_exception.h

sgx_exception_type_t

The sgx_exception_type_t enumeration contains values that specify the
exception type. If the exception vector is #BP (BreakPoint), the exception
type is SGX_EXCEPTION_SOFTWARE; otherwise, the exception type is SGX_
EXCEPTION_HARDWARE.

Syntax

typedef enum _sgx_exception_type_t

{

SGX_EXCEPTION_HARDWARE = 3,
SGX_EXCEPTION_SOFTWARE = 6,

} sgx_exception_type_t;

Requirements

Header sgx_trts_exception.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 394 -

sgx_cpu_context_t

The sgx_cpu_content_t structure contains processor-specific register
data. Custom exception handling uses sgx_cpu_context_t structure to
record the CPU context at exception time.

Syntax

#if defined (_M_X64) || defined (__x86_64__)

typedef struct _cpu_context_t
{

uint64_t rax;
uint64_t rcx;
uint64_t rdx;
uint64_t rbx;
uint64_t rsp;
uint64_t rbp;
uint64_t rsi;
uint64_t rdi;
uint64_t r8;
uint64_t r9;
uint64_t r10;
uint64_t r11;
uint64_t r12;
uint64_t r13;
uint64_t r14;
uint64_t r15;
uint64_t rflags;
uint64_t rip;

} sgx_cpu_context_t;
#else

typedef struct _cpu_context_t
{

uint32_t eax;
uint32_t ecx;
uint32_t edx;
uint32_t ebx;
uint32_t esp;
uint32_t ebp;
uint32_t esi;
uint32_t edi;
uint32_t eflags;
uint32_t eip;

} sgx_cpu_context_t;
#endif

Members

rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8 – r15

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 395 -

64-bit general purpose registers

rflags

64-bit program status and control register

rip

64-bit instruction pointer

eax, ecx, edx, ebx, esp, ebp, esi, edi

32-bit general purpose registers

eflags

32-bit program status and control register

eip

32-bit instruction pointer

Requirements

Header sgx_trts_exception.h

sgx_exception_info_t

A structure of this type contains an exception record with a description of the
exception and processor context record at the time of exception.

Syntax

typedef struct _exception_info_t

{

sgx_cpu_context_t cpu_context;
sgx_exception_vector_t exception_vector;
sgx_exception_type_t exception_type;

} sgx_exception_info_t;

Members

cpu_context

The context record that contains the processor context at the exception time.

exception_vector

The reason the exception occurs. This is the code generated by a hardware
exception.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 396 -

exception_type

The exception type.

SGX_EXCEPTION_HARDWARE(3) indicates a HW exception.

SGX_EXCEPTION_SOFTWARE(6) indicates a SW exception.

Requirements

Header sgx_trts_exception.h

sgx_exception_handler_t

Callback function that serves as a custom exception handler.

Syntax

typedef int (* sgx_exception_handler_t) (sgx_exception_
info_t *info);

Members

info

A pointer to sgx_exception_info_t structure that receives the exception
information.

Return value

EXCEPTION_CONTINUE_SEARCH (0)

The exception handler did not handle the exception and the RTS should call
the next exception handler in the chain.

EXCEPTION_CONTINUE_EXECUTION (-1)

The exception handler handled the exception and the RTS should continue
the execution of the enclave.

Requirements

Header sgx_trts_exception.h

sgx_spinlock_t

Data type for a trusted spin lock.

Syntax

typedef volatile uint32_t sgx_spinlock_t;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 397 -

Members

sgx_spinlock_t defines a spin lock object inside the enclave.

Requirements

Header sgx_spinlock.h

sgx_thread_t

Data type to uniquely identify a trusted thread.

Syntax

typedef uintptr * sgx_thread_t;

Members

sgx_thread_t is an opaque data type with no member fields visible to
users. This data type is subject to change. Thus, enclave code should not rely
on the contents of this data object.

Requirements

Header sgx_thread.h

sgx_thread_mutex_t

Data type for a trusted mutex object.

Syntax

typedef struct sgx_thread_mutex

{

size_t m_refcount;
uint32_t m_control;
volatile uint32_t m_lock;
sgx_thread_t m_owner;
sgx_thread_queue_t m_queue;

} sgx_thread_mutex_t;

Members

m_control

Flags to define whether a mutex is recursive or not.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 398 -

m_refcount

Reference counter of the mutex object. It will be increased by 1 if the mutex is
successfully acquired, and be decreased by 1 if the mutex is released.

NOTE
The counter will be greater than one only if the mutex is recursive.

m_lock

The spin lock used to guarantee atomic updates to the mutex object.

m_owner

The thread that currently owns the mutex writes its unique thread identifier in
this field, which otherwise is NULL. This field is used for error checking, for
instance to ensure that only the owner of a mutex releases it.

m_queue

Ordered list of threads waiting to acquire the ownership of the mutex. The
queue itself is a structure containing a head and a tail for quick insertion and
removal under FIFO semantics.

Requirements

Header sgx_thread.h

sgx_thread_mutexattr_t

Attribute for the trusted mutex object.

Syntax

typedef struct sgx_thread_mutex_attr

{

unsigned char m_dummy;
} sgx_thread_mutexattr_t;

Members

m_dummy

Dummy member not supposed to be used.

Requirements

Header sgx_thread.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 399 -

sgx_thread_rwlock_t

Data type for a trusted mutex object.

Syntax

typedef struct _sgx_thread_rwlock_t

{

uint32_t m_reader_count;
uint32_t m_writers_waiting;
volatile uint32_t m_lock;
sgx_thread_t m_owner;
sgx_thread_queue_t m_reader_queue;
sgx_thread_queue_t m_writer_queue;

} sgx_thread_rwlock_t;

Members

m_reader_count

The number of readers currently holding the lock. It is increased by 1
whenever a reader lock is successfully acquired, and is decreased by 1 when a
reader lock is released.

m_writers_waiting

The number of threads waiting on a writer lock.

m_lock

The spin lock used to guarantee atomic updates to the rwlock object.

m_owner

The thread that currently owns the writer lock, writing its unique thread iden-
tifier in this field, which otherwise is NULL. This field is used for error checking,
for instance to ensure that only the owner of a writer lock releases it.

m_reader_queue

Ordered list of threads waiting to acquire the reader lock. The queue itself is a
structure containing a head and a tail for quick insertion and removal under
FIFO semantics.

m_writer_queue

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 400 -

Ordered list of threads waiting to acquire the writer lock. The queue itself is a
structure containing a head and a tail for quick insertion and removal under
FIFO semantics.

Requirements

Header sgx_thread.h

sgx_thread_rwlockattr_t

Attribute for the trusted rwlock object.

Syntax

typedef struct _sgx_thread_rwlock_attr_t

{

unsigned char m_dummy;
} sgx_thread_rwlockattr_t;

Members

m_dummy

Dummy member not supposed to be used.

Requirements

Header sgx_thread.h

sgx_thread_cond_t

Data type for a trusted condition variable.

Syntax

typedef struct sgx_thread_cond

{

sgx_spinlock_t m_lock;
sgx_thread_queue_t m_queue;

} sgx_thread_cond_t;

Members

m_lock

The spin lock used to guarantee atomic updates to the condition variable.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 401 -

m_queue

Ordered list of threads waiting on the condition variable. The queue itself is a
structure containing a head and a tail for quick insertion and removal under
FIFO semantics.

Requirements

Header sgx_thread.h

sgx_thread_condattr_t

Attribute for the trusted condition variable.

Syntax

typedef struct sgx_thread_cond_attr

{

unsigned char m_dummy;
} sgx_thread_condattr_t;

Members

m_dummy

Dummy member not supposed to be used.

Requirements

Header sgx_thread.h

sgx_misc_select_t

Enclave misc select bits. The value is 4 byte in length. Currently all the bits are
reserved for future extension.

Requirements

Header sgx_attributes.h

sgx_attributes_t

Enclave attributes definition structure.

NOTE
When specifying an attributes mask used in key derivation, at a minimum the
flags that should be set are INITED, DEBUG and RESERVED bits.

NOTE

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 402 -

The XGETBV instruction can be executed to determine the register sets,
which are parts of the XSAVE state, which corresponds to the xfrm value of
attributes. Since the save state depends on the host system and the operating
system, an attributes mask generally does not include these bits (XFRM is set
to 0).

Syntax

typedef struct _sgx_attributes_t

{

uint64_t flags;
uint64_t xfrm;

} sgx_attributes_t;

Members

flags

Flags is a combination of the following values:

Value Description
SGX_FLAGS_INITTED
0x0000000000000001ULL

The enclave is initialized

SGX_FLAGS_DEBUG
0x0000000000000002ULL

The enclave is a debug enclave

SGX_FLAGS_MODE64BIT
0x0000000000000004ULL

The enclave runs in 64 bit mode

SGX_FLAGS_PROVISION_KEY
0x0000000000000010ULL

The enclave has access to a provision key

SGX_FLAGS_EINITTOKEN_KEY
0x0000000000000020ULL

The enclave has access to a launch key

SGX_FLAGS_KSS
0x0000000000000080ULL

The enclave requires the KSS feature.

xfrm

xfrm is a combination of the following values:

Value Description
SGX_XFRM_LEGACY
0x0000000000000003ULL

FPU and Intel® Streaming SIMD Extensions states are
saved

SGX_XFRM_AVX
0x0000000000000006ULL

Intel® Advanced Vector Extensions state is saved

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 403 -

Requirements

Header sgx_attributes.h

sgx_misc_attribute_t

Enclave misc_select and attributes definition structure.

Syntax

typedef struct _sgx_misc_attributes_t

{

sgx_attributes_t secs_attr;
sgx_misc_select_t misc_select;

} sgx_misc_attribute_t;

Members

secs_attr

The Enclave attributes.

misc_select

The Enclave misc select configuration.

Requirements

Header sgx_attributes.h

sgx_isv_svn_t

ISV security version. The value is 2 bytes in length. Use this value in key deriv-
ation and obtain it by getting an enclave report (sgx_create_report).

Requirements

Header sgx_key.h

sgx_cpu_svn_t

sgx_cpu_svn_t is a 128-bit value representing the CPU security version.
Use this value in key derivation and obtain it by getting an enclave report
(sgx_create_report).

Syntax

#define SGX_CPUSVN_SIZE 16

typedef struct _sgx_cpu_svn_t {

uint8_t svn[SGX_CPUSVN_SIZE];

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 404 -

} sgx_cpu_svn_t;

Requirements

Header sgx_key.h

sgx_key_id_t

sgx_key_id_t is a 256 bit value used in the key request structure. The
value is generally populated with a random value to provide key wear-out pro-
tection.

Syntax

#define SGX_KEYID_SIZE 32

typedef struct _sgx_key_id_t {

uint8_t id[SGX_KEYID_SIZE];
} sgx_key_id_t;

Requirements

Header sgx_key.h

sgx_key_128bit_t

A 128 bit value that is the used to store a derived key from for example the
sgx_get_key function.

Requirements

Header sgx_key.h

sgx_key_request_t

Data structure of a key request used for selecting the appropriate key and any
additional parameters required in the derivation of the key. This is an input
parameter for the sgx_get_key function.

Syntax

typedef struct _key_request_t {

uint16_t key_name;
uint16_t key_policy;
sgx_isv_svn_t isv_svn;
uint16_t reserved1;
sgx_cpu_svn_t cpu_svn;
sgx_attributes_t attribute_mask;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 405 -

sgx_key_id_t key_id;
sgx_misc_select_t misc_mask;
sgx_config_svn_t config_svn
uint8_t reserved2[434]

} sgx_key_request_t;

Members

key_name

The key name requested. Possible values are below:

Key Name Value Description
SGX_KEYSELECT_
EINITTOKEN

0x0000 Launch key

SGX_KEYSELECT_
PROVISION

0x0001 Provisioning key

SGX_KEYSELECT_
PROVISION_SEAL

0x0002 Provisioning seal key

SGX_KEYSELECT_
REPORT

0x0003 Report key

SGX_KEYSELECT_
SEAL

0x0004 Seal key

key_policy

Identify which inputs are required for the key derivation. Possible values are
below:

Key policy name Value Description
SGX_KEYPOLICY_MRENCLAVE 0x0001 Derive key using the enclave’s

ENCLAVE measurement
register

SGX_KEYPOLICY_MRSIGNER 0x0002 Derive key using the enclave’s
SIGNER measurement register

SGX_KEYPOLICY_NOISVPRODID 0x0004 Derive key without the
enclave's ISVPRODID

SGX_KEYPOLICY_CONFIGID 0x0008 Derive key with the enclave's
CONFIGID

SGX_KEYPOLICY_ISVFAMILYID 0x0010 Derive key with the enclave's
ISVFAMILYID

SGX_KEYPOLICY_ISVEXTPRODID0x0020 Derive key with the enclave's
ISVEXTPRODID

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 406 -

NOTE
If MRENCLAVE is used, that key can only be rederived by that particular
enclave.

NOTE
If MRSIGNER is used, another enclave with the same ISV_SVN could derive the
key as well. This option is useful for applications that instantiate more than one
enclave and want to pass data. The derived key could be used in the encryp-
tion process for the data passed between the enclaves.

isv_svn

The ISV security version number that should be used in the key derivation.

reserved1

Reserved for future use. Must be zero.

cpu_svn

The TCB security version number that should be used in the key derivation.

attribute_mask

Attributes mask used to determine which enclave attributes must be included
in the key. It only impacts the derivation of a seal key, a provisioning key, and a
provisioning seal key. See the definition of sgx_attributes_t.

key_id

Value for key wear-out protection. Generally initialized with a random number.

misc_mask

The misc mask used to determine which enclave misc select must be included
in the key. Reserved for future function extension.

config_svn

The enclave CONFIGSVN field.

reserved2

Reserved for future use. Must be set to zero.

Requirements

Header sgx_key.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 407 -

sgx_measurement_t

sgx_measurement_t is a 256-bit value representing the enclave meas-
urement.

Syntax

#define SGX_HASH_SIZE 32

typedef struct _sgx_measurement_t {

uint8_t m[SGX_HASH_SIZE];
} sgx_measurement_t;

Requirements

Header sgx_report.h

sgx_mac_t

This type is utilized as storage for the 128-bit CMAC value of the report data.

Requirements

Header sgx_report.h

sgx_report_data_t

sgx_report_data_t is a 512-bit value used for communication between
the enclave and the target enclave. This is one of the inputs to the sgx_cre-
ate_report function.

Syntax

#define SGX_REPORT_DATA_SIZE 64

typedef struct _sgx_report_data_t {

uint8_t d[SGX_REPORT_DATA_SIZE];
} sgx_report_data_t;

Requirements

Header sgx_report.h

sgx_prod_id_t

A 16-bit value representing the ISV enclave product ID. This value is used in
the derivation of some keys.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 408 -

Requirements

Header sgx_report.h

sgx_target_info_t

Data structure of report target information. This is an input to functions sgx_
create_report and sgx_init_quote, which are used to identify the
enclave (its measurement and attributes), which will be able to verify the gen-
erated REPORT.

Syntax

typedef struct _targe_info_t

{

sgx_measurement_t mr_enclave;
sgx_attributes_t attributes;
uint8_t reserved1[2];
sgx_config_svn_t config_svn;
sgx_misc_select_t misc_select;
uint8_t reserved2[8];
sgx_config_id_t config_id;
uint8_t reserved3[384];

} sgx_target_info_t;

Members

mr_enclave

Enclave hash of the target enclave

attributes

Attributes of the target enclave

reserved1

Reserved for future use. Must be set to zero.

config_svn

Enclave CONFIGSVN.

misc_select

Misc select bits for the target enclave. Reserved for future function extension.

reserved2

Reserved for future use. Must be set to zero.

config_id

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 409 -

Enclave CONFIGID

reserved3

Reserved for future use. Must be set to zero.

Requirements

Header sgx_report.h

sgx_report_body_t

Data structure that contains information about the enclave. This data structure
is a part of the sgx_report_t structure.

Syntax

typedef struct _report_body_t

{

sgx_cpu_svn_t cpu_svn;
sgx_misc_select_t misc_select;
uint8_t reserved1[12];
sgx_isvext_prod_id_t isv_ext_prod_id;
sgx_attributes_t attributes;
sgx_measurement_t mr_enclave;
uint8_t reserved2[32];
sgx_measurement_t mr_signer;
uint8_t reserved3[32];
sgx_config_id_t config_id;
sgx_prod_id_t isv_prod_id;
sgx_isv_svn_t isv_svn;
sgx_config_svn_t config_svn;
uint8_t reserved4[42];
sgx_isvfamily_id_t isv_family_id;
sgx_report_data_t report_data;

} sgx_report_body_t;

Members

cpu_svn

Security version number of the host system TCB (CPU).

misc_select

Misc select bits for the target enclave. Reserved for future function extension.

reserved1

Reserved for future use. Must be set to zero.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 410 -

isv_ext_prod_id

ISV assigned Extended Product ID.

attributes

Attributes for the enclave. See sgx_attributes_t for the definitions of these
flags.

mr_enclave

Measurement value of the enclave.

reserved2

Reserved for future use. Must be set to zero.

mr_signer

Measurement value of the public key that verified the enclave.

reserved3

Reserved for future use. Must be set to zero.

config_id

The enclave CONFIGID.

isv_prod_id

SV Product ID of the enclave.

isv_svn

ISV security version number of the enclave.

config_svn

CONFIGSVN field.

reserved4

Reserved for future use. Must be set to zero.

isv_family_id

ISV assigned Family ID.

report_data

Set of data used for communication between the enclave and the target
enclave.

Requirements

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 411 -

Header sgx_report.h

sgx_report_t

Data structure that contains the report information for the enclave. This is the
output parameter from the sgx_create_report function. This is the input
parameter for the sgx_init_quote function.

Syntax

typedef struct _report_t

{

sgx_report_body_t body;
sgx_key_id_t key_id;
sgx_mac_t mac;

} sgx_report_t;

Members

body

The data structure containing information about the enclave.

key_id

Value for key wear-out protection.

mac

The CMAC value of the report data using report key.

Requirements

Header sgx_report.h

sgx_aes_gcm_data_t

The structure contains the AES GCM* data, payload size, MAC* and payload.

Syntax

typedef struct _aes_gcm_data_t

{

uint32_t payload_size;
uint8_t reserved[12];
uint8_t payload_tag[SGX_SEAL_TAG_SIZE];
uint8_t payload[];

} sgx_aes_gcm_data_t;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 412 -

Members

payload_size

Size of the payload data which includes both the encrypted data followed by
the additional authenticated data (plain text). The full payload array is part of
the AES GCM MAC calculation.

reserved

Padding to allow the data to be 16 byte aligned.

payload_tag

AES-GMAC of the plain text, payload, and the sizes

payload

The payload data buffer includes the encrypted data followed by the optional
additional authenticated data (plain text),which is not encrypted.

NOTE
The optional additional authenticated data (MAC or plain text) could be data
which identifies the seal data blob and when it was created.

Requirements

Header sgx_tseal.h

sgx_sealed_data_t

Sealed data blob structure containing the key request structure used in the
key derivation. The data structure has been laid out to achieve 16 byte align-
ment. This structure should be allocated within the enclave when the seal
operation is performed. After the seal operation, the structure can be copied
outside the enclave for preservation before the enclave is destroyed. The
sealed_data structure needs to be copied back within the enclave before
unsealing.

Syntax

typedef struct _sealed_data_t

{

sgx_key_request_t key_request;
uint32_t plain_text_offset;
uint8_t reserved[12];
sgx_aes_gcm_data_t aes_data;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 413 -

} sgx_sealed_data_t;

Members

key_request

The key request used to derive the seal key.

plain_text_offset

The offset within the aes_data structure payload to the start of the optional
additional MAC text.

reserved

Padding to allow the data to be 16 byte aligned.

aes_data

Structure contains the AES GCM data (payload size, MAC, and payload).

Requirements

Header sgx_tseal.h

sgx_epid_group_id_t

Type for Intel® EPID group id

Syntax

typedef uint8_t sgx_epid_group_id_t[4];

Requirements

Header sgx_quote.h

sgx_basename_t

Type for base name used in sgx_quote.

Syntax

typedef struct _basename_t

{

uint8_t name[32];
} sgx_basename_t;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 414 -

Members

name

The base name used in sgx_quote.

Requirements

Header sgx_quote.h

sgx_quote_t

Type for quote used in remote attestation.

Syntax

typedef struct _quote_t

{

uint16_t version;
uint16_t sign_type;
sgx_epid_group_id_t epid_group_id;
sgx_isv_svn_t qe_svn;
sgx_isv_svn_t pce_svn;
uint32 xeid;
sgx_basename_t basename;
sgx_report_body_t report_body;
uint32_t signature_len;
uint8_t signature[];

} sgx_quote_t;

Members

version

The version of the quote structure.

sign_type

The indicator of the Intel® EPID signature type.

epid_group_id

The Intel® EPID group id of the platform belongs to.

qe_svn

The svn of the QE.

pce_svn

The svn of the PCE.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 415 -

xeid

The extended Intel® EPID group ID.

basename

The base name used in sgx_quote.

report_body

The report body of the application enclave.

signature_len

The size in byte of the following signature.

signature

The place holder of the variable length signature.

Requirements

Header sgx_quote.h

sgx_quote_sign_type_t

Enum indicates the quote type, linkable or un-linkable

Syntax

typedef enum {

SGX_UNLINKABLE_SIGNATURE,
SGX_LINKABLE_SIGNATURE

} sgx_quote_sign_type_t;

Requirements

Header sgx_quote.h

sgx_spid_t

Type for a service provider ID.

Syntax

typedef struct _spid_t

{

uint8_t id[16];
} sgx_spid_t;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 416 -

Members

id

The ID of the service provider.

Requirements

Header sgx_quote.h

sgx_quote_nonce_t

This data structure indicates the quote nonce.

Syntax

typedef struct _sgx_quote_nonce

{

uint8_t rand[16];
} sgx_quote_nonce_t;

Members

rand

The 16 bytes random number used as nonce.

Requirements

Header sgx_quote.h

sgx_att_key_id_t

An opaque type which identifies the attestation key to use when generating a
quote.

Syntax

typedef struct _att_key_id_t {

uint8_t att_key_id[256];
} sgx_att_key_id_t;

Requirements

Header sgx_quote.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 417 -

sgx_ql_att_key_id_t

Aa single attestation key. Contains both QE identity and the attestation
algorithm ID.

Syntax

typedef struct _sgx_ql_att_key_id_t

{

uint16_t id;
uint16_t version;
uint16_t mrsigner_length;
uint8_t mrsigner[48];
uint32_t prod_id;
uint8_t extended_prod_id[16];
uint8_t config_id[64];
uint8_t family_id[16];
uint32_t algorithm_id;

}sgx_ql_att_key_id_t;

Members

id

Structure ID.

version

Structure version.

mrsigner_length

Number of valid bytes in MRSIGNER.

mrsigner

SHA256 or SHA384 hash of the Public key that signed the QE. The lower
bytes contain MRSIGNER. Bytes beyond mrsigner_length are '0's.

prod_id

Legacy Product ID of the QE.

extended_prod_id

Extended Product ID of the QE. All 0's for legacy format enclaves.

config_id

Config ID of the QE.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 418 -

family_id

Family ID of the QE.

algorithm_id

Identity of the attestation key algorithm.

Requirements

Header sgx_quote.h

sgx_att_key_id_ext_t

An extended attestation key to use when generating a quote.

Syntax

typedef struct _sgx_att_key_id_ext_t

{

sgx_ql_att_key_id_t base;
uint8_t spid[16];
uint16_t att_key_type;
uint8_t reserved[80];

}sgx_att_key_id_ext_t;

Members

base

The base structure of sgx_ql_att_key_id_t.

spid

Service provider ID for EPID quote. Should be 0s for ECDSA quote.

att_key_type

For non-EPID quote, it should be 0. For EPID quote, it equals to sgx_quote_
sign_type_t.

reserved

The structure should have the same size as sgx_att_key_id_t.

Requirements

Header sgx_quote.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 419 -

sgx_qe_report_info_t

Data structure that contains the information from app enclave and report gen-
erated by Quoting Enclave. This is the input and output parameter from the
sgx_get_quote_ex function.

Syntax

typedef struct _qe_report_info_t

{

sgx_quote_nonce_t nonce;
sgx_target_info_t app_enclave_target_info;
sgx_report_t qe_report;

} sgx_qe_report_info_t;

Members

nonce

The quote nonce from app enclave used to generate quote.

app_enclave_target_info

The target info of the app enclave used to generate quote.

qe_report

The report generated by Quote Enclave.

Requirements

Header sgx_quote.h

sgx_ra_context_t

Type for a context returned by the key exchange library.

Syntax

typedef uint32_t sgx_ra_context_t;

Requirements

Header sgx_key_exchange.h

sgx_ra_key_128_t

Type for 128 bit key used in remote attestation.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 420 -

Syntax

typedef uint8_t sgx_ra_key_128_t[16];

Requirements

Header sgx_key_exchange.h

sgx_ra_derive_secret_keys_t

The sgx_ra_derive_secret_keys_t function should take the Diffie-Hell-
man shared secret as input to allow the ISV enclave to generate their own
derived shared keys (SMK, SK, MK and VK). Implementation of the function
should return the appropriate return value.

Syntax

typedef sgx_status_t(*sgx_ra_derive_secret_keys_t)(

const sgx_ec256_dh_shared_t* p_shared_key,
uint16_t kdf_id,
sgx_ec_key_128bit_t* p_smk_key,
sgx_ec_key_128bit_t* p_sk_key,
sgx_ec_key_128bit_t* p_mk_key,
sgx_ec_key_128bit_t* p_vk_key

);

Parameters

p_shared_key [in]

The the Diffie-Hellman shared secret.

kdf_id [in]

Key Derivation Function ID.

p_smk_key [out]

The output SMK.

p_sk_key [out]

The output SK.

p_mk_key [out]

The output MK.

p_vk_key [out]

The output VK.

Return value

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 421 -

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.

SGX_ERROR_KDF_MISMATCH

Indicates key derivation function does not match.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation, or contexts reach
the limits.

SGX_ERROR_UNEXPECTED

Indicates that an unexpected error occurred.

Description

A pointer to a call back routine matching the function prototype.

Requirements

Header sgx_tkey_exchange.h

sgx_ra_key_type_t

Enum of the key types used in remote attestation.

Syntax

typedef enum _sgx_ra_key_type_t

{

SGX_RA_KEY_SK = 1,
SGX_RA_KEY_MK,
SGX_RA_KEY_VK,

} sgx_ra_key_type_t;

Requirements

Header sgx_key_exchange.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 422 -

sgx_ra_msg1_t

This data structure describes the message 1 that is used in remote attestation
and key exchange protocol.

Syntax

typedef struct _sgx_ra_msg1_t

{

sgx_ec256_public_t g_a;
sgx_epid_group_id_t gid;

} sgx_ra_msg1_t;

Members

g_a (Little Endian)

The public EC key of an application enclave, based on NIST P-256 elliptic
curve.

gid (Little Endian)

ID of the Intel® EPID group of the platform belongs to.

Requirements

Header sgx_key_exchange.h

sgx_ra_msg2_t

This data structure describes the message 2 that is used in the remote attest-
ation and key exchange protocol.

Syntax

typedef struct _sgx_ra_msg2_t

{

sgx_ec256_public_t g_b;
sgx_spid_t spid;
uint16_t quote_type;
uint16_t kdf_id;
sgx_ec256_signature_t sign_gb_ga;
sgx_mac_t mac;
uint32_t sig_rl_size;
uint8_t sig_rl[];

} sgx_ra_msg2_t;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 423 -

Members

g_b (Little Endian)

Public EC key of service provider, based on the NIST P-256 elliptic curve.

spid

ID of the service provider

quote_type (Little Endian)

Indicates the quote type, linkable (1) or un-linkable (0).

kdf_id (Litte Endian)

Key derivation function id.

sign_gb_ga (Litte Endian)

ECDSA Signature of (g_b||g_a), using the service provider’s ECDSA private
key corresponding to the public key specified in sgx_ra_init or sgx_ra_
init_ex function, where g_b is the public EC key of the service provider and
g_a is the public key of application enclave, provided by the application
enclave, in the remote attestation and key exchange message 1.

mac

AES-CMAC of gb, spid 2-byte TYPE, 2-byte KDF-ID, and sign_gb_ga using
SMK as the AES-CMAC key. SMK is derived as follows:

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

l a counter (0x01)

l a label: the ASCII representation of the string 'SMK' in Little Endian
format

l a bit length (0x80)

If the ISV needs to use a different KDF than the default KDF used by Intel®
SGX PSW, the ISV can use the sgx_ra_init_ex API to provide a callback

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 424 -

function to generate the remote attestation keys used in the SIGMA protocol
(SMK), verification (VK) and returned by the API sgx_ra_get_keys (SK, MK).

sig_rl_size

Size of the sig_rl, in bytes.

sig_rl

Pointer to the Intel® EPID Signature Revocation List Certificate of the Intel®
EPID group identified by the gid in the remote attestation and key exchange
message 1.

Requirements

Header sgx_key_exchange.h

sgx_ra_msg3_t

This data structure describes message 3 that is used in the remote attestation
and key exchange protocol.

Syntax

typedef struct _sgx_ra_msg3_t

{

sgx_mac_t mac;
sgx_ec256_public_t g_a;
sgx_ps_sec_prop_desc_t ps_sec_prop;
uint8_t quote[];

} sgx_ra_msg3_t;

Members

mac

AES-CMAC of g_a, ps_sec_prop, GID, and quote[], using SMK. SMK is derived
follows:

KDK = AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 425 -

l a counter (0x01)

l a label (the ASCII representation of the string 'SMK' in Little Endian
format)

l a bit length (0x80)

If the ISV needs to use a different KDF than the default KDF used by Intel®
SGX PSW, the ISV can use the sgx_ra_init_ex API to provide a callback
function to generate the remote attestation keys used in the SIGMA protocol
(SMK), verification (VK) and returned by the API sgx_ra_get_keys (SK, MK).

g_a (Little Endian)

Public EC key of application enclave

ps_sec_prop

Security property of the Intel® SGX Platform Service. If the Intel® SGX Platform
Service security property information is not required in the remote attestation
and key exchange process, this field will be all 0s.

quote

Quote returned from sgx_get_quote. The first 32-byte report_body.re-
port_data field in Quote is set to SHA256 hash of ga, gb and VK, and the
second 32-byte is set to all 0s. VK is derived from the Diffie-Hellman shared
secret elliptic curve field element between the service provider and the
application enclave:

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

VK = AES-CMAC(KDK, 0x01||’VK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the VKcalculation includes:

l a counter (0x01)

l a label (the ASCII representation of the string 'VK' in Little Endian format)

l a bit length (0x80).

If the ISV needs to use a different KDF than the default KDF used by Intel®
SGX PSW, the ISV can use the sgx_ra_init_ex API to provide a callback

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 426 -

function to generate the remote attestation keys used in the SIGMA protocol
(SMK), verification (VK) and returned by the API sgx_ra_get_keys (SK, MK).

Requirements

Header sgx_key_exchange.h

sgx_ecall_get_ga_trusted_t

Function pointer of proxy function generated from sgx_tkey_
exchange.edl.

Syntax

typedef sgx_status_t (* sgx_ecall_get_ga_trusted_t)(

sgx_enclave_id_t eid,
int* retval,
sgx_ra_context_t context,
sgx_ec256_public_t *g_a // Little Endian

);

Note that the 4th parameter this function takes should be in little endian
format.

Requirements

Header sgx_ukey_exchange.h

sgx_ecall_proc_msg2_trusted_t

Function pointer of proxy function generated from sgx_tkey_
exchange.edl.

Syntax

typedef sgx_status_t (* sgx_ecall_proc_msg2_trusted_t)(

sgx_enclave_id_t eid,
int* retval,
sgx_ra_context_t context,
const sgx_ra_msg2_t *p_msg2,
const sgx_target_info_t *p_qe_target,
sgx_report_t *p_report,
sgx_quote_nonce_t *p_nonce

);

Requirements

Header sgx_ukey_exchange.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 427 -

sgx_ecall_get_msg3_trusted_t

Function pointer of proxy function generated from sgx_tkey_
exchange.edl.

Syntax

typedef sgx_status_t (* sgx_ecall_get_msg3_trusted_t)(

sgx_enclave_id_t eid,
int* retval,
sgx_ra_context_t context,
uint32_t quote_size,
sgx_report_t* qe_report,
sgx_ra_msg3_t *p_msg3,
uint32_t msg3_size

);

Requirements

Header sgx_ukey_exchange.h

sgx_platform_info_t

This opaque data structure indicates the platform information received from
Intel Attestation Server.

Syntax

#define SGX_PLATFORM_INFO_SIZE 101

typedef struct _platform_info

{

uint8_t platform_info[SGX_PLATFORM_INFO_SIZE];
} sgx_platform_info_t;

Members

platform_info

The platform information.

Requirements

Header sgx_quote.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 428 -

sgx_update_info_bit_t

Type for information of what components of Intel SGX need to be updated
and how to update them.

Syntax

typedef struct _update_info_bit

{

int ucodeUpdate;
int csmeFwUpdate;
int pswUpdate;

} sgx_update_info_bit_t;

Members

ucodeUpdate

Whether the ucode needs to be updated.

csmeFwUpdate

Whether the csme firmware needs to be updated.

pswUpdate

Whether the platform software needs to be updated.

Requirements

Header sgx_quote.h

sgx_dh_msg1_t

Type for MSG1 used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_msg1_t

{

sgx_ec256_public_t g_a;
sgx_target_info_t target;

} sgx_dh_msg1_t;

Members

g_a (Little Endian)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 429 -

Public EC key of responder enclave of DH session establishment, based on the
NIST P-256 elliptic curve.

target

Report target info to be used by the peer enclave to generate the Intel® SGX
report in the message 2 of the DH secure session protocol.

Requirements

Header sgx_dh.h

sgx_dh_msg2_t

Type for MSG2 used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_msg2_t

{

sgx_ec256_public_t g_b;
sgx_report_t report;
uint8_t cmac[SGX_DH_MAC_SIZE];

} sgx_dh_msg2_t;

Members

g_b (Little Endian)

Public EC key of initiator enclave of DH session establishment, based on the
NIST P-256 elliptic curve.

report

Intel® SGX report of initiator enclave of DH session establishment. The first 32-
byte of the report_data field of the report is set to SHA256 hash of g_a and g_
b, where g_a is the EC Public key of the responder enclave and g_b is the EC
public key of the initiator enclave. The second 32-byte of the report_data
field is set to all 0s.

cmac[SGX_DH_MAC_SIZE]

AES-CMAC value of g_b,report, 2-byte KDF-ID, and 0x00s using SMK as the
AES-CMAC key. SMK is derived as follows:

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 430 -

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

l a counter (0x01)

l a label: the ASCII representation of the string 'SMK' in Little Endian
format

l a bit length (0x80)

Requirements

Header sgx_dh.h

sgx_dh_msg3_t

Type for MSG3 used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_msg3_t

{

uint8_t cmac[SGX_DH_MAC_SIZE];
sgx_dh_msg3_body_t msg3_body;

} sgx_dh_msg3_t;

Members

cmac[SGX_DH_MAC_SIZE]

CMAC value of message body of MSG3, using SMK as the AES-CMAC key. SMK
is derived as follows:

KDK= AES-CMAC(key0, LittleEndian(gab x-coordinate))

SMK = AES-CMAC(KDK, 0x01||’SMK’||0x00||0x80||0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 431 -

l a counter (0x01)

l a label: the ASCII representation of the string 'SMK' in Little Endian
format

l a bit length (0x80)

msg3_body

Variable length message body of MSG3.

Requirements

Header sgx_dh.h

sgx_dh_msg3_body_t

Type for message body of the MSG3 structure used in DH secure session
establishment.

Syntax

typedef struct _sgx_dh_msg3_body_t

{

sgx_report_t report;
uint32_t additional_prop_length;
uint8_t additional_prop[0];

} sgx_dh_msg3_body_t;

Members

report

Intel® SGX report of responder enclave. The first 32-byte of the report_data
field of the report is set to SHA256 hash of g_b and g_a, where g_a is the EC
Public key of the responder enclave and g_b is the EC public key of the ini-
tiator enclave. The second 32-byte of the report_data field is set to all 0s.

additional_prop_length

Length of additional property field in bytes.

additional_prop[0]

Variable length buffer holding additional data that the responder enclave may
provide.

Requirements

Header sgx_dh.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 432 -

sgx_dh_session_enclave_identity_t

Type for enclave identity of initiator or responder used in DH secure session
establishment.

Syntax

typedef struct _sgx_dh_session_enclave_identity_t

{

sgx_cpu_svn_t cpu_svn;
uint8_t reserved_1[32];
sgx_attributes_t attributes;
sgx_measurement_t mr_enclave;
uint8_t reserved_2[32];
sgx_measurement_t mr_signer;
uint8_t reserved_3[96];
sgx_prod_id_t isv_prod_id;
sgx_isv_svn_t isv_svn;

} sgx_dh_session_enclave_identity_t;

Members

cpu_svn

Security version number of CPU.

reserved_1[32]

Reserved 32 bytes.

attributes

Intel SGX attributes of enclave.

mr_enclave

Measurement of enclave.

reserved_2[32]

Reserved 32 bytes.

mr_signer

Measurement of enclave signer.

reserved_3[96]

Reserved 96 bytes.

isv_prod_id (Little Endian)

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 433 -

Product ID of ISV enclave.

isv_svn (Little Endian)

Security version number of ISV enclave.

Requirements

Header sgx_dh.h

sgx_dh_session_role_t

Type for role of establishing a DH secure session used in DH secure session
establishment.

Syntax

typedef enum _sgx_dh_session_role_t

{

SGX_DH_SESSION_INITIATOR,
SGX_DH_SESSION_RESPONDER

} sgx_dh_session_role_t;

Members

SGX_DH_SESSION_INITIATOR

Initiator of a DH session establishment.

SGX_DH_SESSION_RESPONDER

Responder of a DH session establishment.

Requirements

Header sgx_dh.h

sgx_dh_session_t

Type for session used in DH secure session establishment.

Syntax

typedef struct _sgx_dh_session_t

{

uint8_t sgx_dh_session[SGX_DH_SESSION_DATA_SIZE];
} sgx_dh_session_t;

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 434 -

Members

sgx_dh_session

Data of DH session.

The array size of sgx_dh_session SGX_DH_SESSION_DATA_SIZE is defined as
200 bytes.

Requirements

Header sgx_dh.h

sgx_config_svn_t

16-bits value representing the enclave CONFIGSVN. This value is used in the
derivation of some keys.

Requirements

Header sgx_key.h

sgx_config_id_t

64-bytes value representing the enclave CONFIGID. This value is used in the
derivation of some keys.

Requirements

Header sgx_key.h

sgx_isvext_prod_id_t

16-bytes value representing the enclave Extended Product ID. This value is
used in the derivation of some keys.

Requirements

Header sgx_report.h

sgx_isvfamily_id_t

16-bytes value representing the enclave product Family ID. This value is used
in the derivation of some keys.

Requirements

Header sgx_report.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 435 -

sgx_kss_config_t

Structure of this type contains CONFIGSVN and CONFIGID values for a KSS
enabled enclave. You can specify different CONFIGSVN and CONFIGID values
for the enclave to have additional control options over the key derivation pro-
cess.

Syntax

typedef struct _sgx_kss_config_t {

sgx_config_id_t config_id;
sgx_config_svn_t config_svn;

} sgx_kss_config_t;

Members

config_id

64-bytes value representing the enclave CONFIGID.

config_svn

16-bits value representing the enclave CONFIGSVN.

Requirements

Header sgx_urts.h

align_req_t

align_req_t is an offset-length pair used to describe the secrets within a
structure.

Syntax

typedef struct _req_data_t {

size_t offset;
size_t len;

} req_data_t;

Requirements

Header sgx_secure_align_api.h

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 436 -

custom_alignment_aligned

custom_alignment_aligned is a class template used to align secrets that
are statically-defined, for example, on the stack.

Syntax

template<class T, std:size_t A, std::size_t… OLs>

class custom_alignment_aligned;

T is the class, structure, or type that needs alignment, for example, a structure
representing or containing a cryptographic key.

A is the desired, traditional alignment of T. Do not confuse it with the align-
ment needed to mitigate the vulnerability - the two are related, but different.

OLs is a variable-length list of offset-length pairs. Each pair describes a secret
within T. If T represents a single secret, there is only one pair, (0, sizeof(T)).

Requirements

Header sgx_secure_align.h

Error Codes

Table 18 Error code

Value Error Name Description
0x0000 SGX_SUCCESS
0x0001 SGX_ERROR_

UNEXPECTED
An unexpected error.

0x0002 SGX_ERROR_
INVALID_
PARAMETER

The parameter is incorrect.

0x0003 SGX_ERROR_OUT_
OF_MEMORY

There is not enough memory available to com-
plete this operation.

0x0004 SGX_ERROR_
ENCLAVE_LOST

The enclave is lost after power transition or used
in child process created by fork().

0x0005 SGX_ERROR_
INVALID_STATE

The API is invoked in incorrect order or state.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 437 -

0x0008 SGX_ERROR_
FEATURE_NOT_
SUPPORTED

The feature is not supported.

0x000a SGX_ERROR_
MEMORY_MAP_
FAILURE

Failed to reserve memory for the enclave.

0x1001 SGX_ERROR_
INVALID_
FUNCTION

The ECALL or OCALL function index is incorrect.

0x1003 SGX_ERROR_OUT_
OF_TCS

The enclave is out of TCS.

0x1006 SGX_ERROR_
ENCLAVE_
CRASHED

The enclave has crashed.

0x1007 SGX_ERROR_
ECALL_NOT_
ALLOWED

ECALL is not allowed at this time. Possible reas-
ons:

l ECALL is not public.

l ECALL is blocked by the dynamic entry
table.

l A nested ECALL is not allowed during
global initialization.

0x1008 SGX_ERROR_
OCALL_NOT_
ALLOWED

OCALL is not allowed during exception handling.

0x1009 SGX_ERROR_
STACK_OVERRUN

Stack overrun occurs within the enclave.

0x2000 SGX_ERROR_
UNDEFINED_
SYMBOL

The enclave contains an undefined symbol.

0x2001 SGX_ERROR_
INVALID_ENCLAVE

The enclave image is incorrect.

0x2002 SGX_ERROR_
INVALID_
ENCLAVE_ID

The enclave ID is invalid.

0x2003 SGX_ERROR_
INVALID_
SIGNATURE

The signature is invalid.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 438 -

0x2004 SGX_ERROR_
NDEBUG_ENCLAVE

The enclave is signed as a product enclave and
cannot be created as a debuggable enclave.

0x2005 SGX_ERROR_OUT_
OF_EPC

There is not enough EPC available to load the
enclave or one of the Architecture Enclaves
needed to complete the operation requested.

0x2006 SGX_ERROR_NO_
DEVICE

Cannot open the device.

0x2007 SGX_ERROR_
MEMORY_MAP_
CONFLICT

Page mapping failed in the driver.

0x2009 SGX_ERROR_
INVALID_
METADATA

The metadata is incorrect.

0x200C SGX_ERROR_
DEVICE_BUSY

Device is busy.

0x200D SGX_ERROR_
INVALID_VERSION

Metadata version is inconsistent between uRTS
and sgx_sign or the uRTS is incompatible with
the current platform.

0x200E SGX_ERROR_
MODE_
INCOMPATIBLE

The target enclave (32/64 bit or HS/Sim) mode
is incompatible with the uRTS mode.

0x200F SGX_ERROR_
ENCLAVE_FILE_
ACCESS

Cannot open the enclave file.

0x2010 SGX_ERROR_
INVALID_MISC

The MiscSelect or MiscMask settings are incor-
rect.

0x2011 SGX_ERROR_
INVALID_LAUNCH_
TOKEN

The launch token is incorrect.

0x3001 SGX_ERROR_MAC_
MISMATCH

Report verification error.

0x3002 SGX_ERROR_
INVALID_
ATTRIBUTE

The enclave is not authorized.

0x3003 SGX_ERROR_
INVALID_CPUSVN

The CPU SVN is beyond the CPU SVN value of
the platform.

0x3004 SGX_ERROR_
INVALID_ISVSVN

The ISV SVN is greater than the ISV SVN value of
the enclave.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 439 -

0x3005 SGX_ERROR_
INVALID_KEYNAME

Unsupported key name value.

0x4001 SGX_ERROR_
SERVICE_
UNAVAILABLE

AE service does not respond or the requested
service is not supported.

0x4002 SGX_ERROR_
SERVICE_TIMEOUT

The request to AE service timed out.

0x4003 SGX_ERROR_AE_
INVALID_EPIDBLOB

Intel® EPID blob verification error.

0x4004 SGX_ERROR_
SERVICE_INVALID_
PRIVILEDGE

Enclave has no privilege to get a launch token.

0x4005 SGX_ERROR_EPID_
MEMBER_
REVOKED

The Intel® EPID group membership has been
revoked. The platform is not trusted. Updating
the platform and repeating the operation will not
remedy the revocation.

0x4006 SGX_ERROR_
UPDATE_NEEDED

Intel® SGX requires update.

0x4007 SGX_ERROR_
NETWORK_
FAILURE

Network connecting or proxy setting issue is
encountered.

0x4008 SGX_ERROR_AE_
SESSION_INVALID

The session is invalid or ended by the server.

0x400a SGX_ERROR_BUSY The requested service is temporarily not avail-
able.

0x400c SGX_ERROR_MC_
NOT_FOUND

The Monotonic Counter does not exist or has
been invalidated.

0x400d SGX_ERROR_MC_
NO_ACCESS_
RIGHT

The caller does not have the access right to the
specified VMC.

0x400e SGX_ERROR_MC_
USED_UP

No monotonic counter is available.

0x400f SGX_ERROR_MC_
OVER_QUOTA

Monotonic counters reached quota limit.

0x4011 SGX_ERROR_KDF_
MISMATCH

Key derivation function does not match during
key exchange.

0x4012 SGX_ERROR_
UNRECOGNIZED_

Intel® EPID Provisioning failed because the plat-
form is not recognized by the back-end server.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 440 -

PLATFORM

0x6001 SGX_ERROR_PCL_
ENCRYPTED

(Intel® SGX PCL) Trying to load an encrypted
enclave using the wrong API or with wrong para-
meters

0x6002 SGX_ERROR_PCL_
NOT_ENCRYPTED

(Intel® SGX PCL) Trying to load an enclave that is
not encrypted using API or parameters for
encrypted enclaves

0x6003 SGX_ERROR_PCL_
MAC_MISMATCH

(Intel® SGX PCL) The runtime AES-GCM-128
MAC result of an encrypted section does not
match the one at build time.

0x6004 SGX_ERROR_PCL_
SHA_MISMATCH

(Intel® SGX PCL) The runtime SHA256 of the
decryption key does not match the one at build
time.

0x6005 SGX_ERROR_PCL_
GUID_MISMATCH

(Intel® SGX PCL) The GUID in the decryption key
sealed blob does not match the one at build
time.

0x7001 SGX_ERROR_FILE_
BAD_STATUS

The file is in a bad status. Run sgx_clearerr
to try and fix it.

0x7002 SGX_ERROR_FILE_
NO_KEY_ID

The Key ID field is all zeros, cannot re-generate
the encryption key.

0x7003 SGX_ERROR_FILE_
NAME_MISMATCH

The current file name is different than the ori-
ginal file name (not allowed, substitution attack).

0x7004 SGX_ERROR_FILE_
NOT_SGX_FILE

The file is not an Intel® SGX file.

0x7005 SGX_ERROR_FILE_
CANT_OPEN_
RECOVERY_FILE

A recovery file cannot be opened, so the flush
operation cannot continue (only used when no
EXXX is returned).

0x7006 SGX_ERROR_FILE_
CANT_WRITE_
RECOVERY_FILE

A recovery file cannot be written, so the flush
operation cannot continue (only used when no
EXXX is returned).

0x7007 SGX_ERROR_FILE_
RECOVERY_
NEEDED

When opening the file, recovery is needed, but
the recovery process failed.

0x7008 SGX_ERROR_FILE_
FLUSH_FAILED

fflush operation (to the disk) failed (only used
when no EXXX is returned).

0x7009 SGX_ERROR_FILE_
CLOSE_FAILED

fclose operation (to the disk) failed (only used
when no EXXX is returned).

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 441 -

0x8001 SGX_ERROR_
UNSUPPORTED_
ATT_KEY_ID

Platform quoting infrastructure does not support
the key.

0x8002 SGX_ERROR_ATT_
KEY_
CERTIFICATION_
FAILURE

Failed to generate and certify the attestation
key.

0x8003 SGX_ERROR_ATT_
KEY_
UNINITIALIZED

The platform quoting infrastructure does not
have the attestation key available to generate a
quote.

0x8004 SGX_ERROR_
INVALID_ATT_
KEY_CERT_DATA

The data returned by the sgx_get_quote_
config() of the platform library is invalid.

0x8005 SGX_ERROR_
PLATFORM_CERT_
UNAVAILABLE

The PCK Cert for the platform is not available.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 442 -

Appendix
This topic provides the following reference information:

l Unsupported GCC* Compiler Options for Enclaves

l Unsupported GCC* Built-in Functions

l Unsupported C Standard Functions

l Unsupported C++ Standard Classes and Functions

l Unsupported C and C++ Keywords

l C++11 Support on Linux* OS

Unsupported GCC* Compiler Options for Enclaves
The following GCC* options are not supported to build enclaves.

Table 19 Unsupported GCC Compiler Options

Option Category Remark
-fgnu-tm Options con-

trolling C dia-
lect.

Depends on libitm (transactional memory).

-fhosted OS functions not supported within enclaves.

 -fuse-cxa-atexit Options con-
trolling C++ dia-
lect.

Depends on atexit(), which is not supported within
an enclave.

All options Options con-
trolling object-
ive-C and
objective-C++.

Objective C/C++ not supported.

All options Options for
debugging a pro-
gram.

All options because of runtime support required.
Separate Intel® SGX debugger support provided.

-fmudflap, -fmud-
flapth, –fmudflapir

Optimization
options.

Dependent on libmudflap.

-fexec-char-
set=charset,

-fwide-exec-char-
set=charset

Options con-
trolling the pre-
processor.

Only providing partial support for UTF-8.

-x objective-c Objective-C is not supported within an
enclave.

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 443 -

 -lobjc Linker options. Objective C not supported.

-pie, -s Used for executables.
-shared-libgcc,

-static-libgcc

Enclaves cannot depend on libgcc.

 -static-libstdc++ Intel® SGX SDK provides an Intel SGX version of the
C++ standard library.

-T script Need to control the format of enclave
code.

-mglibc Hardware
models and
configurations
for

GNU*/Linux*
options.

Intel SGX SDK provides an Intel SGX compatible C
standard library.

-muclibc, -mbionic, -
mandroid, -tno-
android-cc, -tno-
android-ld

Not applicable.

-msoft-float Hardware mod-
els and con-
figurations for
Intel & AMD*
x86-x64
options.

Run-time emulation of floating point is not sup-
ported.

-m96bit-long-double 96-bit not supported.

-mthreads Depends on mingwthrd.

-mcmodel=small, -
mcmodel=kernel, -
mcmodel=medium, -
mcmodel=large

Linker will fail.

All options Hardware mod-
els and con-
figurations for
Intel & AMD*
x86-x64 Win-
dows* options

All options because these are only used with Cyg-
win* or MinGW*.

-fbounds-check Options for code
generation con-
ventions

Currently for Java* and Fortran* front-ends, not
C/C++.

-fpie, -fPIE Only pertains to executable files.

-fpie, -pie compilation option -fpie and linking option -pie can-
not be used at the same time under simulation
mode if TLS support is required.

-fpie, -shared -fpic compilation option -fpie and linking option -shared
-fpic cannot be used at the same time under both
simulation mode and 64-bit hardware mode if TLS
support is required.

-finstrument-functions ISV would need to provide support for functions_

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 444 -

_cyg_profile_func_enter and __
cyg_profile_func_exit if this option is
needed.

-fsplit-stack Requires libgcc runtime support.

Unsupported GCC* Built-in Functions
The following table illustrates unsupported GCC* built-in functions inside the
enclave. Using any of these built-in functions will result in a linker error during
the compilation of the enclave.

The complete list of GCC built-in functions is available at http://gc-
c.gnu.org/onlinedocs/gcc-4.7.2/gcc/X86-Built_002din-Functions.html#X86-
Built_002din-Functions.

Table 20 Unsupported GCC Compiler Built-in Functions

Non supported: Math built-ins
__builtin_signbitd32 __builtin_signbitd64 __builtin_signbitd128

__builtin_finited32 __builtin_finited64 __builtin_finited128

__builtin_isinfd32 __builtin_isinfd64 __builtin_isinfd128

__builtin_isnand32 __builtin_isnand64 __builtin_isnand64

Not Supported: String/memory built-ins
__builtin_strcat __builtin_strcpy __builtin_strdup

__builtin_stpcpy

Not Supported: I/O related built-ins

__builtin_fprintf __builtin_fprintf_unlocked __builtin_putc

__builtin_putc_unlocked __builtin_fputc __builtin_fputc_unlocked

__builtin_fputs __builtin_fputs_unlocked __builtin_fscanf

__builtin_fwrite __builtin_fwrite_unlocked __builtin_printf

__builtin_printf_unlocked __builtin_putchar __builtin_putchar_unlocked

__builtin_puts __builtin_puts_unlocked __builtin_scanf

__builtin_sprintf __builtin_sscanf __builtin_vfprintf

__builtin_vfscanf __builtin_vprintf __builtin_vscanf

__builtin_vsprintf __builtin_vsscanf

Not Supported: wctype built-in

__builtin_iswalnum __builtin_iswalpha __builtin_iswblank

__builtin_iswcntrl __builtin_iswdigit __builtin_iswgraph

__builtin_iswlower __builtin_iswprint __builtin_iswpunct

__builtin_iswspace __builtin_iswupper __builtin_iswxdigit

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 445 -

__builtin_towlower __builtin_towupper

Not Supported: Process control built-ins

__builtin_execl __builtin_execlp __builtin_execle

__builtin_execv __builtin_execvp __builtin_execve

__builtin_exit __builtin_fork __builtin__exit

__builtin__Exit

Non Supported: Object size checking built-ins

__builtin___fprintf_chk __builtin___printf_chk __builtin___vfprintf_chk

__builtin___vprintf_chk

Non Supported: Miscellaneous built-ins

__builtin_dcgettext __builtin_dgettext __builtin_gettext

__builtin_strfmon

Non Supported: Profiling Hooks

__cyg_profile_func_enter __cyg_profile_func_exit

Non Supported: TLS Emulation

target.emutls.get_address target.emutls.register_common

Non supported: Ring 0 built-ins

_writefsbase_u32 _writefsbase_u64 _writegsbase_u32

_writegsbase_u64 __rdpmc __rdtsc

__rdtscp

Non Supported: OpenMP* built-ins

__builtin_omp_get_thread_num __builtin_omp_get_num_threads

__builtin_GOMP_atomic_start __builtin_GOMP_atomic_end

__builtin_GOMP_barrier __builtin_GOMP_taskwait

__builtin_GOMP_taskyield __builtin_GOMP_critical_start

__builtin_GOMP_critical_end __builtin_GOMP_critical_name_start

__builtin_GOMP_critical_name_end __builtin_GOMP_loop_static_start

__builtin_GOMP_loop_dynamic_start __builtin_GOMP_loop_guided_start

__builtin_GOMP_loop_runtime_start __builtin_GOMP_loop_ordered_static_start

__builtin_GOMP_loop_ordered_dynamic_start __builtin_GOMP_loop_ordered_guided_
start

__builtin_GOMP_loop_ordered_runtime_start __builtin_GOMP_loop_static_next

__builtin_GOMP_loop_dynamic_next __builtin_GOMP_loop_guided_next

__builtin_GOMP_loop_runtime_next __builtin_GOMP_loop_ordered_static_next

__builtin_GOMP_loop_ordered_dynamic_next __builtin_GOMP_loop_ordered_guided_next

__builtin_GOMP_loop_ordered_runtime_next __builtin_GOMP_loop_ull_static_start

__builtin_GOMP_loop_ull_dynamic_start __builtin_GOMP_loop_ull_guided_start

__builtin_GOMP_loop_ull_runtime_start __builtin_GOMP_loop_ull_ordered_static_

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 446 -

start

__builtin_GOMP_loop_ull_ordered_dynamic_
start

__builtin_GOMP_loop_ull_static_next

__builtin_GOMP_loop_ull_ordered_guided_
start

__builtin_GOMP_loop_ull_dynamic_next

__builtin_GOMP_loop_ull_ordered_runtime_
start

__builtin_GOMP_loop_ull_guided_next

__builtin_GOMP_loop_ull_runtime_next __builtin_GOMP_loop_ull_ordered_static_
next

__builtin_GOMP_loop_ull_ordered_dynamic_
next

__builtin_GOMP_parallel_loop_static_start

__builtin_GOMP_loop_ull_ordered_guided_
next

__builtin_GOMP_parallel_loop_dynamic_
start

__builtin_GOMP_loop_ull_ordered_runtime_
next

__builtin_GOMP_parallel_loop_guided_start

__builtin_GOMP_parallel_loop_runtime_start __builtin_GOMP_loop_end

__builtin_GOMP_loop_end_nowait __builtin_GOMP_ordered_start

__builtin_GOMP_ordered_end __builtin_GOMP_parallel_start

__builtin_GOMP_parallel_end __builtin_GOMP_task

__builtin_GOMP_sections_start __builtin_GOMP_sections_next

__builtin_GOMP_parallel_sections_start __builtin_GOMP_sections_end

__builtin_GOMP_sections_end_nowait __builtin_GOMP_single_start

__builtin_GOMP_single_copy_start __builtin_GOMP_single_copy_end

Unsupported C Standard Functions
You cannot use the following Standard C functions within the enclave; oth-
erwise, the compilation would fail.

Table 21 Unsupported C Standard Functions

Header
file

Header
file in
Intel
SGX?

Unsupported Definition

Macros/Types Functions

complex.h No complex, _complex_
I,

imaginary, _ima-
ginary_I,

I,

cacos(), cacosf(), cacosl(), casin(), casinf(), casinl
(), catan(), catanf(), catanl(), ccos(), ccosf(), ccosl
(), csin(), csinf(), csinl(), ctan(), ctanf(), ctanl(),
cacosh(), cacoshf(), cacoshl(), casinh(), casinhf(),
casinhl(), catanh(), catanhf(), catanhl(), ccosh(),
ccoshf(), ccoshl(), csinh(), csinhf(), csinhl(),

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 447 -

Header
file

Header
file in
Intel
SGX?

Unsupported Definition

Macros/Types Functions

#pragma STDC CX_
LIMITED_RANGE on-
off-switch

ctanh(), ctanhf(), ctanhl(), cexp(), cexpf(), cexpl(),
clog(), clogf(), clogl(), cabs(), cabsf(), cabsl(),
cpow(), cpowf(), cpowl(), csqrt(), csqrtf(), csqrtl
(), carg(), cargf(), cargl(), cimag(), cimagf(), cimagl
(), conj(), conjf(), conjl(), cproj(), cprojf(), cprojl(),
creal(), crealf(), creall()

fenv.h No fenv_t, fexcept_t,

FE_DIVBYZERO,

FE_INEXACT,

FE_INVALID,

FE_OVERFLOW,

FE_UNDERFLOW,

FE_ALL_EXCEPT,

FE_DOWNWARD,

FE_TONEAREST,

FE_TOWARDZERO,

FE_UPWARD,

FE_DFL_ENV,

#pragma STDC
FENV_ACCESS on-
off-switch

feclearexcept(), fegetexceptflag(),
feraiseexcept(), fesetexceptflag(),
fetestexcept(), fegetround(), feset-
round(), fegetenv(), feholdexcept(),
fesetenv(), feupdateenv()

inttypes.h Yes SCNdN, SCNiN, SCNoN,
SCNuN, SCNxN,
SCNdLEASTN,
SCNiLEASTN,
SCNoLEASTN,
SCNuLEASTN,
SCNxLEASTN,
SCNdFASTN, SCNiFASTN,
SCNoFASTN,

wcstoimax(),

wcstoumax()

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 448 -

Header
file

Header
file in
Intel
SGX?

Unsupported Definition

Macros/Types Functions

SCNuFASTN,
SCNxFASTN, SCNdMAX,
SCNiMAX, SCNoMAX,
SCNuMAX, SCNxMAX,
SCNdPTR, SCNiPTR,
SCNoPTR, SCNuPTR,
SCNxPTR

locale.h No LC_ALL, LC_
COLLATE,

LC_CTYPE,

LC_MONETARY,

LC_NUMERIC,

LC_TIME, struct
lconv

setlocale(),

localeconv()

signal.h No sig_atomic_t, SIG_DFL,
SIG_ERR, SIG_IGN,
SIGABRT, SIGFPE, SIGILL,
SIGINT, SIGSEGV,
SIGTERM

signal(),

raise()

stdio.h Yes fpos_t,

_IOFBF, _IOLBF,

_IONBF,

FILENAME_MAX,

FOPEN_MAX,

L_tmpnam,

SEEK_CUR, SEEK_
END, SEEK_SET,
TMP_MAX, stderr,
stdin, stdout

remove(), rename(), tmpfile(), tmpnam
(), fclose(), fflush(), fopen(), freopen(),
setbuf(), setvbuf(), fprintf(), fscanf(),
printf(), scanf(), sprintf(), sscanf(),
vfprintf(), vfscanf(), vprintf(), vscanf(),
vsprintf(), vsscanf(), fgetc(), fgets(),
fputc(), fputs(), getc(), getchar(), gets(),
putc(), putchar(), puts(), ungetc(), fread
(), fwrite(), fgetpos(), fseek(), fsetpos(),
ftell(), rewind(), clearerr(), feof(), ferror
(), perror()

stdlib.h Yes rand(), srand(), exit(), _Exit(), getenv(), system()

string.h Yes strcpy(), strcat(), strstr()*

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 449 -

Header
file

Header
file in
Intel
SGX?

Unsupported Definition

Macros/Types Functions

tgmath.h No

time.h Yes clock(), mktime(), time(), ctime(), gmtime(), loc-
altime()

wchar.h Yes fwprintf(), fwscanf(), swscanf(), vfwprintf(), vfws-
canf(), vswscanf(), vwprintf(), vwscanf(), wprintf
(), wscanf(), fgetwc(), fgetws(), fputwc(), fputws
(), fwide(), getwc(), getwchar(), putwc(), put-
wchar(), ungetwc(), wcstod(), wcstof(), wcstold
(), wcstol(), wcstoll(), wcstoul(), wcstoull(),
wcscpy(), wcscat(), wcsftime()

wctype.h Yes iswalnum(), iswalpha(), iswblank(), iswcntrl(),
iswdigit(), iswgraph(), iswlower(), iswprint(), isw-
punct(), iswspace(), iswupper(), iswxdigit(),
wctype(), towlower(), towupper(), towctrans(),
wctrans(),

(*) The trusted standard C library does not support char strstr(const
char*, const char*). However, it does support the variant const
char* strstr (const char*, const char*) is supported.

NOTE
Trusted C library is enhanced to avoid format string attacks. Any attempts to
use %n in printf-family functions such as snprintf will result in a run-time
error.

Unsupported C++ Standard Classes and Functions
The following table lists unsupported C++11 classes and functions inside the
enclave.

Table 22 Utilities library

Header File Support Unsupported Classes
cstdlib Partial
csignal No
csetjmp No

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 450 -

cstdarg Yes
typeinfo Partial
typeindex Yes
type_traits Yes
bitset Yes
functional Yes
utility Yes
ctime Partial
chrono No
cstddef Yes
initializer_list Yes
tuple Yes

Table 23 Dynamic memory management

Header File Support Unsupported Classes
memory Yes
new Partial
scoped_allocator Yes

Table 24 Numeric limits

Header FileSupport Unsupported Classes
cfloat Yes
cinttypes Partial
climits Yes
cstdint Partial
limits Yes

Table 25 Error handling

Header File Support Unsupported Classes
cassert Yes
cerrno Yes
exception Partial nested_exception
stdexcept Yes
system_error Yes

Table 26 Strings library

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 451 -

Header FileSupport Unsupported Classes
cctype Partial
cstring Partial
cuchar No
cwchar Partial
cwctype Partial
string Yes

Table 27 Containers library

Header File Support Unsupported Classes
array Yes
dequeue Yes
forward_list Yes
list Yes
map Yes
queue Yes
set Yes
stack Yes
unordered_map Yes
unordered_set Yes
vector Yes

Table 28 Algorithms library

Header FileSupport Unsupported Classes
algorithm Partial

Table 29 Iterators library

Header FileSupport Unsupported Classes
iterator Yes

Table 30 Numerics library

Header FileSupport Unsupported Classes
cfenv No
cmath Partial
complex Yes
numeric Yes

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 452 -

random No
ratio Yes
valarray Yes

Table 31 Input/Output library

Header
File

Support Unsupported Classes

cstdio Partial
fstream No
iomanip Partial Functions get_money, put_money, get_time,

put_time are not supported.
ios Yes
iosfwd Yes
iostream No
istream Partial Formatted input is not supported.
ostream Partial Formatted output is not supported.
sstream Partial
streambuf Yes
strstream Yes

Table 32 Localization library

Header
File

Support Unsupported Classes

clocale No
codecvt No
locale Partial std::ctype<char> and std::ctype<wchar_t>

are the only supported facets.

Table 33 Regular expressions library

Header FileSupport Unsupported Classes
regex No

Table 34 Atomic operations library

Header FileSupport Unsupported Classes
atomic Yes

Table 35 Thread library

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 453 -

Header File Support Unsupported Classes
condition_
variable

Partial

future No
mutex Partial timed_mutex, recursive_timed_mutex
thread No

Table 36 C compatibility headers

Header
File

Support Unsupported Classes

ccomplex Yes
ciso646 Yes This header file is empty in a conforming

implementation
cstdalign Yes
cstdbool Yes
ctgmath Yes

Unsupported C and C++ Keywords
The following keywords are not supported in an enclave.

Table 37 Unsupported C and C++ Keywords

__transaction_atomic __transaction_relaxed __transaction_cancel

The following GCC* specific attributes are not supported in an enclave.

Table 38 Unsupported GCC* Compiler Attributes

destructor transaction_callable transaction_unsafe

transaction_safe transaction_may_cancel_outer transaction_pure

transaction_wrap disinterrupt

C++11 Support on Linux* OS
Although C++11 is considered the baseline, the availability of certain C++11
features depends on the GCC* compiler version and/or a specific compiler
option. The table below summarizes the C++11 features available when you
use the GCC compiler option -std=c++11 and link the enclave with sgx_tcxx
as the standard C++ library.

Table 39 Supported C++11 Language Features

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 454 -

C++11 Language Feature
Alignment support

Allowing move constructors to throw [noexcept]

Bidirectional fences

C99 preprocessor

Data-dependency ordering: atomics and memory model

Declared type of an expression

Default template arguments for function templates

Defaulted and deleted functions

Delegating constructors

Dynamic initialization and destruction with concurrency

Explicit conversion operators

Explicit virtual overrides

Expression SFINAE

Extended friend declarations

Extending sizeof

Extern templates

Forward declarations for enums

Generalized attributes

Generalized constant expressions

Inheriting constructors

Initialization of class objects by rvalues

Initializer lists

Inline namespaces

Lambdas: New wording for C++0x lambdas

Local and unnamed types as template arguments

Memory model

Minimal support for garbage collection

New character types

Non-static data member initializers

Null pointer constant

R-value references

Range-based for

Raw string literals

Right angle brackets

Sequence points

Solving the SFINAE problem for expressions

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 455 -

C++11 Language Feature
Standard layout types

Static assertions

Strong compare and exchange

Strongly-typed enums

Template aliases

Thread-local storage

Unicode strings literals

Universal character name literals

Unrestricted unions

User-defined literals

Variadic templates

__func__ predefined identifier

auto-typed variables

long long

C++14 Support on Linux* OS
Although C++14 is considered to be the baseline, the availability of certain
C++14 features depends on the GCC* compiler version and/or the compiler
option. The table below summarizes the C++14 features that are available
when you use the GCC compiler option std=c++14 and link the enclave with
sgx_tcxx as the standard C++ library.

Table 40 Supported C++14 Language Features

C++14 Language Feature
heterogeneous lookup

function return type deduction

variable template

binary literals

digit separators

generic lambdas

lambda capture expressions

attribute [[deprecated]]

aggregate member initialization

relaxed constexpr restrictions

alternate type deduction on declaration

Table 41 Supported C++14 Library Features

Intel® Software Guard Extensions Developer Reference for Linux* OS

- 456 -

C++14 Library Feature
std::make_unique

std::integral_constant

std::integer_sequence

std::cbegin

std::cend

std::crbegin

std::crend

std::exchange

std::is_final

std:quoted

std::equal new overload

std::mismatch new overload

std::is_permutation new overload

standard user-defined literals

Supported C Secure Functions
The following table lists supported C secure functions inside the enclave.

Table 1 Supported C Secure Functions

Header file Supported C Secure Functions

mbusafecrt.h strcat_s(), wcscat_s(), strncat_s(), wcsncat_s(), strcpy_s(), wcscpy_s(), strncpy_s(),
wcsncpy_s(), strtok_s(), wcstok_s(), wcsnlen(), _itoa_s(), _itow_s(), _ltoa_s(), _
ltow_s(), _ultoa_s(), _ultow_s(), _i64toa_s(), _i64tow_s(), _ui64toa_s(), _
ui64tow_s(), sprintf_s(), swprintf_s(), _snprintf_s(), _snwprintf_s(), _vsprintf_s(),
_vsnprintf_s(), _vswprintf_s(), _vsnwprintf_s(), memcpy_s(), memmove_s()

	Intel(R) Software Guard Extensions Developer Reference for Linux* OS
	Legal Information
	Revision History
	Introduction
	Intel® Software Guard Extensions Technology Overview
	Intel® Software Guard Extensions Security Properties
	Application Design Considerations
	Terminology and Acronyms

	Setting up an Intel® Software Guard Extensions Project
	Creating Intel® Software Guard Extensions Projects
	Enclave Image Generation

	Using Intel® Software Guard Extensions Eclipse* Plug-in

	Using Intel® Software Guard Extensions SDK Tools
	Edger8r Tool
	Enclave Signing Tool
	Command-Line Syntax
	Enclave Signing Key Management
	File Formats
	Signing Key Files
	Enclave Signer Usage Examples
	OpenSSL* Examples

	Enclave Debugger
	Performance Measurement using Intel® VTune(TM) Amplifier
	Enclave Memory Measurement Tool
	CPUSVN Configuration Tool

	Enclave Development Basics
	Writing Enclave Functions
	Calling Functions inside the Enclave
	Checking the Return Value

	Calling Functions outside the Enclave
	Library Development for Enclaves
	Avoiding Name Collisions

	Linking Enclave with Libraries
	Dynamic Libraries
	Static Libraries
	Simulation Libraries
	Linking Application with Untrusted Libraries

	Enclave Definition Language Syntax
	Comments
	Include Headers
	Keywords
	Basic Types
	Pointers
	Pointer Handling
	Pointer Handling in ECALLs
	Pointer Handling in OCALLs
	Attribute: user_check

	Buffer Size Calculation
	Attribute: size
	Attribute: count

	Strings
	const Keyword

	Structures, Enums and Unions
	Structure Deep Copy

	Arrays
	User Defined Data Types

	Preprocessor Capability
	Propagating errno in OCALLs
	Importing EDL Libraries
	Granting Access to ECALLs
	Using Switchless Calls

	Enclave Configuration File
	Enclave Project Configurations
	Loading and Unloading an Enclave
	Handling Power Events
	Using Switchless Calls
	Usage
	High Level Overview
	Major Highlights:
	Task Pool
	Worker Threads
	Fallback to regular ECALLs/OCALLs
	Nested Switchless ECALL

	Switchless Calls Usage Configuration Tips
	Switchless Calls Operation Mode Callbacks

	Enabling Enclave Code Confidentiality
	Intel® SGX PCL Architectural Overview
	Integrating Intel® SGX PCL with an existing Intel® SGX solution

	Mitigations for Processor MMIO Stale Data Vulnerabilities
	Addressing Stale Data Read from Legacy xAPIC
	Addressing MXCSR Configuration Dependent Timing
	Enable CVE-2020-0551 Mitigation
	Mitigation enabled Trust Libraries
	Create CVE-2020-0551 Mitigation enabled trusted (enclave) project
	Enable Mitigation for existing trusted project

	Protection Keys in SGX

	Intel® Software Guard Extensions SDK Sample Code
	Sample Enclave
	Initialize an Enclave
	Saving and Retrieving the Launch Token

	ECALL/OCALL Functions
	Destroy an Enclave

	Power Transition
	ECALL-Error-Code Based Retry
	ECALLs in Demonstration
	Initialization ECALL after Enclave Creation
	Normal ECALL to Process Secrets within the Enclave

	C++11 Demo
	C++14 Demo
	Attestation
	Local Attestation
	Diffie-Hellman Key Exchange Library and Local Attestation Flow
	Diffie-Hellman Key Exchange Library and Local Attestation 2.0
	Protected Channel Establishment
	Secret Message Exchange and Enclave to Enclave Call

	Remote Attestation
	Remote Key Exchange (KE) Libraries
	Remote Attestation and Protected Session Establishment
	Remote Attestation with a Custom Key Derivation Function (KDF)
	Debugging a Remote Attestation Service Provider
	Using a Different Extended Intel® EPID Group for Remote Attestation
	ECDSA Remote Attestation

	Switchless
	Protected Code Loader
	Sample Enclave for GM SMx using Intel® IPP
	Sample Attested TLS

	Library Functions and Type Reference
	Untrusted Library Functions
	Enclave Creation and Destruction
	Quoting Functions
	Untrusted Key Exchange Functions
	Untrusted Remote Attestation TLS library
	Intel® SGX Enabling and Launch Control Functions
	Intel® SGX device capability Functions

	Trusted Libraries
	Trusted Runtime System
	Intel® Software Guard Extensions Helper Functions
	Custom Exception Handling
	Custom Exception Handler for CPUID Instruction

	Trusted Service Library
	Intel® Software Guard Extensions Instruction Wrapper Functions
	Intel® Software Guard Extensions Sealing and Unsealing Functions
	SealLibrary Introduction
	Example Use Cases

	Diffie–Hellman (DH) Session Establishment Functions
	Custom Alignment Interfaces

	C Standard Library
	Locale Functions
	Random Number Generation Functions
	String Functions
	Abort Function
	atexit_Function
	Thread Synchronization Primitives
	Query CPUID inside Enclave
	Secure Functions
	GCC* Built-in Functions
	Non-Local Jumps
	Reserved Memory Functions

	C++ Language Support
	C++ Standard Library

	Cryptography Library
	Trusted Key Exchange Functions
	Trusted Remote Attestation TLS library
	Intel® Protected File System Library
	Protected FS Usage Limitation
	Protected FS Error Codes
	Protected FS Application Layout
	Protected FS S3/S4 Important Note
	Using the Protected FS Automatic Keys API
	File Transfer with the Automatic Keys API
	Protected FS Security Non-Objectives

	TCMalloc Library
	Switchless Calls Library
	Protected Code Loader Library
	pthreads
	Intel® SGX OpenMP Library
	Supported OpenMP Directives and Runtime Routines
	Unsupported OpenMP Directives and Runtime Routines

	Deep Neural Network Library
	Intel® SGX Protobuf Library
	Unsupported protobuf Field types, Classes and Functions

	Function Descriptions
	sgx_create_enclave
	sgx_create_enclave_ex
	sgx_create_encrypted_enclave
	sgx_create_enclave_from_buffer_ex
	sgx_destroy_enclave
	sgx_get_target_info
	sgx_select_att_key_id
	sgx_init_quote
	sgx_init_quote_ex
	sgx_calc_quote_size
	sgx_get_quote_size
	sgx_get_quote_size_ex
	sgx_get_quote
	sgx_get_quote_ex
	sgx_get_supported_att_key_id_num
	sgx_get_supported_att_key_ids
	sgx_ra_get_msg1
	sgx_ra_get_msg1_ex
	sgx_ra_proc_msg2
	sgx_ra_proc_msg2_ex
	sgx_report_attestation_status
	sgx_check_update_status
	sgx_get_extended_epid_group_id
	sgx_register_wl_cert_chain
	sgx_is_capable
	sgx_cap_enable_device
	sgx_cap_get_status
	sgx_get_whitelist_size
	sgx_get_whitelist
	sgx_is_within_enclave
	sgx_is_outside_enclave
	sgx_read_rand
	sgx_wrpkru
	sgx_rdpkru
	sgx_register_exception_handler
	sgx_unregister_exception_handler
	sgx_spin_lock
	sgx_spin_unlock
	sgx_thread_mutex_init
	sgx_thread_mutex_destroy
	sgx_thread_mutex_lock
	sgx_thread_mutex_trylock
	sgx_thread_mutex_unlock
	sgx_thread_rwlock_init
	sgx_thread_rwlock_destroy
	sgx_thread_rwlock_rdlock
	sgx_thread_rwlock_tryrdlock
	sgx_thread_rwlock_wrlock
	sgx_thread_rwlock_trywrlock
	sgx_thread_rwlock_unlock
	sgx_thread_cond_init
	sgx_thread_cond_destroy
	sgx_thread_cond_wait
	sgx_thread_cond_signal
	sgx_thread_cond_broadcast
	sgx_thread_self
	sgx_thread_equal
	sgx_cpuid
	sgx_cpuidex
	sgx_get_key
	sgx_create_report
	sgx_verify_report
	sgx_self_report
	sgx_self_target
	sgx_get_aligned_ptr
	sgx_aligned_malloc
	sgx_aligned_free
	sgx_calc_sealed_data_size
	sgx_get_add_mac_txt_len
	sgx_get_encrypt_txt_len
	sgx_seal_data
	sgx_seal_data_ex
	sgx_unseal_data
	sgx_mac_aadata
	sgx_mac_aadata_ex
	sgx_unmac_aadata
	sgx_sha256_msg
	sgx_sha256_init
	sgx_sha256_update
	sgx_sha256_get_hash
	sgx_sha256_close
	sgx_sha384_msg
	sgx_sha384_init
	sgx_sha384_update
	sgx_sha384_get_hash
	sgx_sha384_close
	sgx_rijndael128GCM_encrypt
	sgx_rijndael128GCM_decrypt
	sgx_rijndael128_cmac_msg
	sgx_cmac128_init
	sgx_cmac128_update
	sgx_cmac128_final
	sgx_cmac128_close
	sgx_aes_ctr_encrypt
	sgx_aes_ctr_decrypt
	sgx_ecc256_open_context
	sgx_ecc256_close_context
	sgx_ecc256_create_key_pair
	sgx_ecc256_compute_shared_dhkey
	sgx_ecc256_check_point
	sgx_ecdsa_sign
	sgx_ecdsa_verify
	sgx_rsa3072_sign
	sgx_rsa3072_sign_ex
	sgx_rsa3072_verify
	sgx_create_rsa_key_pair
	sgx_create_rsa_priv1_key
	sgx_create_rsa_priv2_key
	sgx_create_rsa_pub1_key
	sgx_free_rsa_key
	sgx_rsa_pub_encrypt_sha256
	sgx_rsa_priv_decrypt_sha256
	sgx_calculate_ecdsa_priv_key
	sgx_ra_init
	sgx_ra_init_ex
	sgx_ra_get_keys
	sgx_ra_close
	sgx_dh_init_session
	sgx_dh_responder_gen_msg1
	sgx_dh_initiator_proc_msg1
	sgx_dh_responder_proc_msg2
	sgx_dh_initiator_proc_msg3
	sgx_fopen
	sgx_fopen_auto_key
	sgx_fclose
	sgx_fread
	sgx_fwrite
	sgx_fflush
	sgx_ftell
	sgx_fseek
	sgx_feof
	sgx_ferror
	sgx_clearerr
	sgx_remove
	sgx_fexport_auto_key
	sgx_fimport_auto_key
	sgx_fclear_cache
	sgx_ecc256_calculate_pub_from_priv
	sgx_ecdsa_verify_hash
	sgx_hmac_sha256_msg
	sgx_hmac256_init
	sgx_hmac256_update
	sgx_hmac256_final
	sgx_hmac256_close
	sgx_aes_gcm128_enc_init
	sgx_aes_gcm128_enc_update
	sgx_aes_gcm128_enc_get_mac
	sgx_aes_gcm_close
	sgx_get_rsrv_mem_info
	sgx_alloc_rsrv_mem_ex
	sgx_alloc_rsrv_mem
	sgx_free_rsrv_mem
	sgx_tprotect_rsrv_mem
	tee_get_certificate_with_evidence
	tee_free_certificate
	tee_verify_certificate_with_evidence
	tee_free_supplemental_data
	tee_verify_certificate_with_evidence_host
	tee_free_supplemental_data_host

	Types and Enumerations
	Type Descriptions
	sgx_enclave_id_t
	sgx_status_t
	sgx_launch_token_t
	sgx_uswitchless_worker_type_t
	sgx_uswitchless_worker_event_t
	sgx_uswitchless_worker_stats_t
	sgx_uswitchless_worker_callback_t
	sgx_uswitchless_config_t
	sgx_exception_vector_t
	sgx_exception_type_t
	sgx_cpu_context_t
	sgx_exception_info_t
	sgx_exception_handler_t
	sgx_spinlock_t
	sgx_thread_t
	sgx_thread_mutex_t
	sgx_thread_mutexattr_t
	sgx_thread_rwlock_t
	sgx_thread_rwlockattr_t
	sgx_thread_cond_t
	sgx_thread_condattr_t
	sgx_misc_select_t
	sgx_attributes_t
	sgx_misc_attribute_t
	sgx_isv_svn_t
	sgx_cpu_svn_t
	sgx_key_id_t
	sgx_key_128bit_t
	sgx_key_request_t
	sgx_measurement_t
	sgx_mac_t
	sgx_report_data_t
	sgx_prod_id_t
	sgx_target_info_t
	sgx_report_body_t
	sgx_report_t
	sgx_aes_gcm_data_t
	sgx_sealed_data_t
	sgx_epid_group_id_t
	sgx_basename_t
	sgx_quote_t
	sgx_quote_sign_type_t
	sgx_spid_t
	sgx_quote_nonce_t
	sgx_att_key_id_t
	sgx_ql_att_key_id_t
	sgx_att_key_id_ext_t
	sgx_qe_report_info_t
	sgx_ra_context_t
	sgx_ra_key_128_t
	sgx_ra_derive_secret_keys_t
	sgx_ra_key_type_t
	sgx_ra_msg1_t
	sgx_ra_msg2_t
	sgx_ra_msg3_t
	sgx_ecall_get_ga_trusted_t
	sgx_ecall_proc_msg2_trusted_t
	sgx_ecall_get_msg3_trusted_t
	sgx_platform_info_t
	sgx_update_info_bit_t
	sgx_dh_msg1_t
	sgx_dh_msg2_t
	sgx_dh_msg3_t
	sgx_dh_msg3_body_t
	sgx_dh_session_enclave_identity_t
	sgx_dh_session_role_t
	sgx_dh_session_t
	sgx_config_svn_t
	sgx_config_id_t
	sgx_isvext_prod_id_t
	sgx_isvfamily_id_t
	sgx_kss_config_t
	align_req_t
	custom_alignment_aligned

	Error Codes

	Appendix
	Unsupported GCC* Compiler Options for Enclaves
	Unsupported GCC* Built-in Functions
	Unsupported C Standard Functions
	Unsupported C++ Standard Classes and Functions
	Unsupported C and C++ Keywords
	C++11 Support on Linux* OS
	C++14 Support on Linux* OS
	Supported C Secure Functions

	Bookmarks
	Enclave_Signature_Structure

