Intel® Open Network Platform Server
Release 1.5 Performance Test Report

SDN/NFV Solutions with Intel® Open Network Platform Server

Document Revision 1.2
November 2015

Revision History

Intel® ONP Server Performance
Test Report

Date Revision Comments
November 11, 2015 1.2 Document updated to include VXLAN tests and additional test results
comparing throughput between Native OVS and OVS with DPDK-netdev
October 2, 2015 1.1 Fixed some broken links
September 30, 2015 1.0 Initial document for release of Intel® Open Network Platform Server

Release 1.5

Test Report

Intel® ONP Server Performance o
Test Report I n tel

Contents
1.0 AUdience and PUIPOSEccceeiiiiieiiiiiieeiirreneneerreneseesrensssssrensssssmenssssrensssssrensssssnenssssssensssssesnnnes 9
2.0 SUMMAIY cuiuiiiuiieiiieiieniieeiieiraitresteestasstsssrssrssseesseestosstasssassssssssssssstssstasstasssssssssssessesstasssasssnsses 10
3.0 Platform SPecifiCationsc..ciiieeeiiiiieiciireceiireceee s reeeee s rene s s renesessrennsessrenessssrennssssrenassssnennnes 11
3.1 [e LV =N [o g =Te 1 =T oL RPN 11
3.2 SOTEWAIE VEISION ..eneiiiiee ettt ettt ettt et s e e s bee e s a b e e sabeesaaeeesabeeessbeesabeesneeesareenane 12
3.3 2 To o] BT =1 u [oY =4 PP PSP PPPPPPPRN 12
2 A 0o T4 T o 11 [T @ o o o TSRS 13
3.5 OPerating SYStEM SETTINGS «.ouuiiiiiieeie ettt e e e s s s s sbb bt e e e e e e s s ssaatbeeeeeessesannenne 14
4.0 Test CoNfigUIratioNS.....ccieeiiieiiiiiiiiieiiieiireeiereeseetnneereserenserensesensserasserassersnssssnsessnssessnsssensessnsans 15
A1 Traffic PrOFIlES oottt ettt e st e e s e st e s sabe e sbeeesaree s 16
5.0 TeSt IMIEEIICS.cciiiiiiimennniiiiiiiiiiieiiiiiinintetriiiiie e ereessssee e e eeessssssee s s et eessassssssessseeenanssssssessseans 17
5.1 Packet Processing Performance IMELIICS......uuii i ciiieeiciiie ettt e et e s e e ee e e s e e e ssanaeeeeas 17
L3 A I o[0T UT=4 oY TU) PRSP SPR 18
5.2.1 1YY A I o [0 TUT =4 Yo TU L SRR 19
5.2.2 I3V =Y G I o [0 TUT=4 Yo TU L SR PR 19
5.3 I (=T ooy PPNt 19
5.4 Packet Delay Variation (PDV)cceeiciiieiiee et eiee et veesteeesate e stae e sateesbaeesaseesnraessaeesareeenns 19
0 =T 0 T e 21
7.0 TESTRESUILS .ccooiiiiiiiiiiiiiiiiiiiiiiii s s 22
7.1 HOSE ThroUughpUt (PHY-PHY) ..ottt ettt et tte e s tee vt e e s tee e sase e sraeebaeesabeeenes 22
7.2 Virtual Switching Throughput (PHY-0OVS-PHY)uuiiiiieieeeeee ettt e 24
7.2.1 Native OVS and OVS With DPDK-NELAEVceiuiiiiiriiieiiieieetee ettt st 26
7.2.2 Core Scaling— One Flow per Port (Total 4 FIOWS)ccccecuerireenenirsienienceie et 29
7.2.3 Core Scaling— 2K Flows per Port (Total 8K FIOWS)ccuveiieiiiiieeiieee ettt 30
7.2.4 BA-Byte PerfOrManCe.....ccciociiiieiieieesiee ettt ettt s st e 31
7.2.3.1 Core Scalability for 64B PACKetS.......ccueeeiiiiieiieiiee ettt e e stre e e e e e aveeas 31
7.2.3.2 Performance with Hyper-Threadingcccccceciieiieciiie ettt 32
7.3 Virtual Switching Latency (PHY-OVS-PHY).......oooi ittt ettt rae e e 34
7.4 One VM Throughput (PHY-VIM-PHY)ooiiiiee ettt e et e e arae e e arae e e e 36

3 Test Report

Intel® ONP Server Performance

inteD

7.4.1 Native OVS and OVS With DPDK-NELAEVceeriieieiiierieeeiie et 38
7.43 OVS With DPDK-NetdeVv — 4K FIOWScccoriiiiiiiieieeeiieste ettt e 41

7.5 Two VM Throughput (PHY-VIVI-VM-PHY)oevimieeeeeeeeeeeeeeeeeee e eeses e enesees s eenes 43
7.6 VXLAN (PHY-OVS-VM-OVS-PHY) ..ottt sttt ettt st sbe e i e 46
7.6.1 VXLAN Test MethOdOIOZYuviiiiiiiiiiiiiiie ettt e s sae e e s sarae e e snanaeaeeas 47
7.6.2 VXLAN TSt RESUIES ..eeeiiiieeiieeieeteet ettt sttt sb e st saneebe e sbeesaeesane e 48
8.0 INAUSEIY BENCHMAIKSceeeniiiieeciiiieeeiirreeesrrraeessreannesseenssessrenssessennssessennssessennssessennsssssennnnnnes 52
8.1 L BT I N Y P PPRPPPPPPPPRt 52
8.2 | I PP PPPPPPPPPPPPRt 52
8.3 Open Platform for NFV (OPNFV)ooi ittt ettt e et e et sate e stae e staesnaeesateesasaeesnneean 53
9.0 Performance TUNING.....ccccciieeiiiteiiticerenereneereeerenserenseeensserassssnsserensssensessnssssnssssnssessnsssansesansans 55
1o 200 R 0o 1T o =8 \V/ =Y o o Vo Yo SRR 55
9.2 CPU Core I50lation fOr OVS-DPDKcciteriiriieieenieeniee sttt ettt sieesreesieesaeesteesaeesbeesbeesaeenas 55
9.3 =Y Yot I 2= I A - PPNt 55
9.4 CPU Core Affinity for ovs-vswitchd and OVS PMD Threads..........ccccceeeeeiiieeeciiee e ecveee e 56
9.5 CPU Core Affinity for the Virtual Machine (gemu-kvm)........ccccoooiiiiiiiiii e, 57
9.6 Troubleshooting Tips FOr OVS ... e et e et e e e ae e s e eabae e e eareeas 59
10.0 OVS TSt SETUP vuivuiiiiiniiniiiiiieiieiieiiaiitiiiesiiesiaietsiersiseestesstssstassssssssssssstssssassssssssssssssasssasssnsses 62
10.1 Configure the HOSt MAChiNEoiiieiiiii ettt ettt e s ta e e e eata e e e e earaeeaean 62
10.2 Set the Kernel BOOt Parameters. i i ittt sttt ettt st st 63
O TR T e o YT 1[T 0 2 0] 0 SRR 63
10.4 INSEAIIOVS .ot st sttt st s et r e e re e s an e san e e n e neenes 64
10.5 Prepare t0 STart OVS ...ttt annnaannnnas 64
10.6 Bind 10GbE NIC Ports to the igh_Uio DIiVEr.....ccc.uiiiieieie ettt sae e 65
10.7 Remove and Terminate Previous-Run OVS and Preparecccocuveeevciveeeeciiee e e eciveeeesnee e 66
10.8 Initialize the New OVS Databaseccecueeiiiiiiiiieneiee ettt 66
10.9 Start OVS-VSWITCNAooueiiiiiiieeee ettt et s e s be s 66
10.10 TUNE OVS-VSWILCNA ..ottt sttt e sb e sae e s s sn e e b e 66
10.11 Create the POIES c..eieiiie ettt e e e b e sre e s sare s reens 68
10.12 Add The POMT FIOWS ..ottt sttt et e s s s e ne e 68
11.0 PHY-VM-PHY TESt SETUP.....ccttii s 69
Test Report 4

Intel® ONP Server Performance o
Test Report I n tel

11,1 Create the POIES .ottt et sttt e e s bt e e bt e s it e e sbe e e sabe e sabeeeneeesabeeennees 69
11,2 Add the POt FIOWS ..cooneiieiee ettt ettt et st et e s b e e s e sbe e e neeesabeeennes 69
11.3 POWEIr ONThe VIM ..ottt ettt ettt et s it e e sbe e e sabe e sabeeeneeesabeeennees 70
11.4 Setthe VM Kernel BOOt PArameterscoovuierieeriieeeiiee ettt siee ettt e siee e s e s e sneeesneeenaees 70
11.5 Set UP the VIM HUBEPAEESviii ittt ee sttt e ettt e st e e e et e e e s satae e e esataeeeensaeeesnnsneeeean 71
11.6 ST UP DPDK 2.0 s nnnnnnen 71
11.7 Set up the VHOSt NetWork in the VIVcoo ittt sae e 72
11.8 Start the test-pmd Application in the VIM......cooiiii it 72
11.9 CPU AFfiNITY TUNINE cooeeeeee ettt e et e e e et e e e et e e e e eataeeeeaaaeeeensaeseessaeeeensaneeennsaneenan 73
12.0 VIM-VIM TSt S@EUP .ceuiiiiiiuiiiiiiiieiieiiaiiiiiieniieiinieiaisisiseesieesiostsssssssssstasstasssassssssssssessasssasssnsses 74
12,1 Create the POIES ..ttt sttt et esbe e she e st st et b ns 74
12,2 Add The PO FIOWS ...ttt st st ettt be e bt e st e st e et e e b enes 74
12.3 POWET ON ThE VIV L.ttt ettt ettt sttt et esb e sae e saee st e eabeebeennes 75
12.3.1 VM Kernel BoOt Parameterscoociieiiiiiiieeiieeeiee ettt sttt s site e st e et e et esbeeesaree s 75
12,4 Set UP the VIM HUBEPAEESeei i eeeieee ettt ettt e e ettt e e e ettt e e e et e e e e att e e e e asaeeeennsaeeeennsaeeeeansaeeanan 76
12,5 ST UP DPDK 2.0, s nnnnnnas 76
12.6 Set up the VHOSt NetWork in the VIVcooeiiiiiee ettt sae e 77
12.7 Start test-pmd Application iINthe VIMc..uiiiiiiiie ettt e e 77
12.8 CPU AFFINITY TUNING c.eeeetieieeeeeesee ettt sttt e r e s e s s e e ne s 78
13.0 VXLAN TSt SELUP ...uvvvreriiiiiiiiiiiiiiiiiiiiisissss s bbb 79
L1301 NATIVE OVS SETUP ittt ettt e sttt e e e s s s s s bbb aeeeeesssssssabaaeaeesssssssnseaneessssssnnsenes 79
13.1.1 Set the Kernel BoOOt PArametersooueiiiiiiieiienierie ettt ettt st s 79
13.1.2 Compile and INSTAll OVS.......coiieeeeeeee e e e s 79
13.1.3 Prepareto STart OV S e aaaeeas 80
13.1.4 Create the Ports and VXLAN VTEPoooiiiiiieiiene ettt s 81
13.1.5 Add the POIt FIOWSoieiieieeteeee ettt sttt et 81
13.2 OVS With DPDK SEEUP ..uttiiiieeiieiiiiiitee e e e e ecetrte e e e e e e eetrre e e e e e e e s seasbtareeseesessnnsaseeeaeessaanssssnnesaesesannsrnns 82
13.2.1 Tune OVS-VSWiItChd fOr VXLANcoiuiiieiieeee ettt sttt ettt st st 82
13.2.2 Create the Ports and VXLAN VTEPooiiieiieiienieeieeeercenee sttt 82
13.2.3 Add The POIT FIOWS ...ttt et 83
(== 1 W10} o101 T-1 4 o] o DU 86

5 Test Report

Intel® ONP Server Performance

inteD

Figures

Figure 4-1. High-Level Overview of TeSt SEEUP ..ciiiiiiiiiiii e e 15
Figure 5-1. Examples of Configurations with Two and Three Switching Operationsc.e.eel. 18
Figure 7-1. HOSt SetUp (PHY=PHY) ...t e e e 22
Figure 7-2. Setup for Virtual Switching Performance Tests (PHY-OVS-PHY) ...ccoiiiiiiiiiiiiiiiiciiieen 24
Figure 7-3. Relative throughput performance of Native OVS and OVS with DPDK-netdev using one

0] 0}V o= I olo] PR 28
Figure 7-4. OVS with DPDK — Host Throughput with HT Disabled (4 FIOWS)coovvviiiiiiiiiiiineen, 29
Figure 7-5. OVS with DPDK — Host Throughput with HT Disabled (8K flows)cocviviiiiiiiiiiieiinnn, 30
Figure 7-6. Core Scaling for 64B Packets with 4 Flows and 4K and 8K FIOWSccvvviiiiiiiiiieinnnnns, 31
Figure 7-7. Performance Scaling with Hyper-Threading Using 4 Flows (1 Flow per Port).................. 32
Figure 7-8. Performance Scaling with Hyper-Threading with 8K Flows (2K Flows per Port)............... 33
Figure 7-9. Virtual Switching Setup for Measuring Latency (PHY-OVS-PHY)c.cooiiiiiiiiiiiiieenen, 34
Figure 7-10. Packet Delay Variation with Varying Load (64B Packets, Zero Packet LOSS) 35
Figure 7-11. Setup for Performance Tests with One VM (PHY-VM-PHY)cocoiiiiiiiiiiieeas 36
Figure 7-12. Relative throughput performance with a single VM comparing Native OVS and OVS with
DPDK-netdev using 0ne PhySiCal COME ..uuiuiiiriiiiiii it e e e s e e r e raees 39
Figure 7-13. Relative throughput performance with a single VM comparing one and two physical cores
[Cale I)Y/ o L= ¥ a1 =T=To [T e) PP 40
Figure 7-14. One-VM Throughput (PHY-VM-PHY) with 4 Flows and 4K FIOWS.........cccoviiiiiiiieiiennnnnnns 42
Figure 7-15. Two-VM Setup (PHY-VM-VM-PHY) ...ttt e e e e 43
Figure 7-16. Two-VM Throughput (PHY-VM-VM-PHY) with 2 Flows and 4K FIOWSc.cccvviieinnnnn. 44
Figure 7-17. Comparison of throughput with 1 VM and 2 VMs using 4K FIOWSccciiiiiiiieininnnn. 45
Figure 7-18. VXLAN Scenario with 2 Physical Ports and VTEP in the vSwitch..........cocoiiiiiiiiiiiinin, 46
Figure 7-19. Test Setup Showing Packet Flows between Hosts and Ixia Traffic Generator................ 47
Figure 7-20. VXLAN Performance for 64B Packets Comparing Native OVS and OVS with DPDK-netdev
[=T A o T 1= P 49
Figure 7-21. VXLAN Performance (PHY-VM-PHY) Comparing Native OVS and OVS with DPDK-netdev
Q=T A o T /== P 50
Figure 8-1. OPNFV Test INfrastrUCtureciuiiiiii et e e e 53
Figure 9-1. Output from htop showing high CPU usage for active QEMU threadscocovvininnnnn. 58

Test Report 6

Intel® ONP Server Performance

Test Report

Tables

Table 3-1. Hardware INgradients. ...t s e e et e e e e e e aeaeas 11
Table 3-2. SOftWArE VeISIONS ...ttt e e e e et e e e e e e e e a e et e e e e e e aeenenenenens 12
L]0][I R TR = T Yo Y <Y o o o o [PP 12
Table 3-4. Compile Option Configurationsciiiiiiii e e e e ea e 13
Table 3-5. SOftWArE VeISIONS ... ittt e e et e et e e e e e e e e et e e e e e ean e e eeenenenenens 14
Table 4-1. Number of Cores Used for Each Test Category....cooiiiiiiiiiiiiiiii e 16
Table 5-1. Throughput and Switching Performance MetriCS......civiiiiiiiiiiii e 18
Table 6-1. SUMMAINY Of TESE CaSES .. tiitiitiiti ittt it et ettt a e r e te e ettt e et et eneraeaeaeans 21
Table 7-1. Host Test CoNfigUIrationS......ouiuieieiiie i e e e e e e e e e a e nenens 22
Table 7-2. L2 TesSt RESUILS fOr HOSE. . uiuii ittt e e e e e e e e n e aenens 23
Table 7-3. L3 Test ReSUILS fOr HOSE....uiiiiiiiiii e 23
Table 7-4. Configurations for Virtual SWitChing TeSTScivivieieiiii e e 25
Table 7-5 Configuration variables for Native OVS and OVS with DPDK-netdevcccviviviiiiiininnnn. 26
Table 7-6. Native OVS, no hyper-threadingcooiiiiii e 26
Table 7-7. Native OVS, with hyper-threading.......ccooiiiiiiiiii e 26
Table 7-8. OVS with DPDK, no hyper-threadingccoiiiiiiii e 27
Table 7-9. OVS with DPDK-netdev, with hyper-threadingc.ccoiiiiiiii e 27
Table 7-10. Packet Sizes that Achieve Line Rate Using 1, 2, and 4 Cores (with 4 Flows).................. 29
Table 7-11. Packet Sizes that Achieve Line Rate Using 1, 2, and 4 Cores (with 8K Flows)................ 30
Table 7-12. 64B Performance Scaling with 1, 2, @nd 4 COreSivviiiiiiiiiiiiiiiii i eees 32
Table 7-13. 64B Performance with/without Hyper-Threading for 4 Flows and 8K Flows 33
Table 7-14. Configurations for Virtual SwWitching TestScciiiiiiiiiii e 37
Table 7-15. Configuration variables for Native OVS and OVS with DPDK-netdev...........cocvvvvieinnnnn. 38
Table 7-16. Native OVS, no hyper-threading (1 physical COre)oovuiiiiiiiiii e, 38
Table 7-17. OVS with DPDK-netdev, no hyper-threading (1 physical core)cooviiiiiiiiiiiiiiiennnn, 38
Table 7-18. OVS with DPDK-netdev, with hyper-threading (1 physical core)........cccovviiiiiiiiiinnnnn. 39
Table 7-19. OVS with DPDK-netdev, no hyper-threading (2 physical cores)ccoevvviiiiiiiiiiinennnn. 40
Table 7-20. Configuration variables for OVS with DPDK-netdev........ccoiviiiiiiiiiiiiiiinieie e 41
Table 7-21. OVS with DPDK-netdeV, 4K flOWS ...iuiiiiiiiiie s e e e 41
Table 7-22. Configuration variables for OVS with DPDK-netdev........cociviiiiiiiiiiiice e 43
Table 7-23. VM-to-VM Packet Throughput with 2 FIOWSoiiiiiiiii e 44
Table 7-24. VM-to-VM Packet Throughput with 4K FIOWSouiiiiiii e, 45
Table 7-25. Configurations fOr VXLAN TeStS .. uuiiiiiiiiiii i i e e s san s e e e e e r e aeanens 48

Test Report

Intel® ONP Server Performance

(inte') Test Report

Table 7-26. Packet Throughput for 64B with Native OVS and OVS with DPDK-netdev 49
Table 7-27. Packet Throughput using Native OVS......cciiiiiii e 51
Table 7-28. Packet Throughput using OVS with DPDK-netdev (1 Core) ...cvviiiiiiiiiiiininie i iieiiennaennns 51
Table 7-29. Packet Throughput using OVS with DPDK-netdev (2 COreS)oiiiviiiniiiniiiinniiinaienanns 51
Test Report 8

Intel® ONP Server Performance o
Test Report l n tel

1.0 Audience and Purpose

Intel® Open Network Platform Server (Intel ONP Server) is a Reference Architecture that provides
engineering guidance and ecosystem-enablement support to encourage widespread adoption of
Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) solutions in Telco,
Enterprise, and Cloud. Intel® Open Network Platform Server Reference Architecture Guides and
Release Notes are available on 01.org.

The primary audiences for this test report are architects and engineers implementing the Intel® ONP
Server Reference Architecture using open-source software ingredients that include:

o DevStack*
OpenStack*

OpenDaylight*
Data Plane Development Kit (DPDK)*
Open vSwitch* with DPDK-netdev

e Fedora*

This test report provides a guide to packet processing performance testing of the Intel® ONP Server.
The report includes baseline performance data and provides system configuration and test cases
relevant to SDN/NFV. The purpose of documenting these configurations and methods is not to imply a
single “correct” approach, but rather to provide a baseline of well-tested configurations and test
procedures. This will help guide architects and engineers who are evaluating and implementing
SDN/NFV solutions more generally and can greatly assist in achieving optimal system performance.

Intel aims to use identical hardware platform specifications and software versions for Intel® ONP
Server Reference Architecture Guide and Performance Test Reports. Exceptions can however occur
due to software issues, version revisions and other factors that occur during integration and
benchmarking activities. Information on these exceptions is provided in Intel® ONP Server Release 1.5
Hardware and Software Specifications Application Note available on 01.org.

9 Test Report

https://01.org/packet-processing/intel%C2%AE-onp-servers
https://01.org/packet-processing/intel%C2%AE-onp-servers

Intel® ONP Server Performance

inteD

2.0 Summary

Benchmarking an SDN/NFV system is not trivial and requires expert knowledge of networking and
virtualization technologies. Engineers also need benchmarking and debugging skills, as well as a good
understanding of the device-under-test (DUT) across compute, networking, and storage domains.
Knowledge of specific network protocols and hands-on experience with relevant open-source software,
such as Linux, kernel-based virtual machine (KVM), quick emulator (QEMU), DPDK, OVS, etc., are also
required.

Repeatability is essential when testing complex systems and can be difficult to achieve with manual
methods. Scripted install procedures and automated test methods will be needed for developing
SDN/NFV solutions. Future versions of Intel® ONP Server will address this critical aspect.

This report builds on earlier Intel® ONP Server test reports available on 01.org as archived documents.
A previous report (Intel ONP Server 1.3) contains certain baseline throughput test data and
procedures for Linux operating system setup, BIOS configurations, core-usage configuration for OVS,
VM setup, and building DPDK and OVS.

This current test report includes the following:
e New versions of software ingredients
¢ VvHost user for QEMU
e 40Gbps performance testing with the Intel® Ethernet X710-DA2 Adapter
e Latency performance metrics
e Virtual eXtensible LAN (VXLAN) performance tests
e Tuning methods and troubleshooting tips for OVS
e Information on related industry NFV test activities
Performance data include the following configurations:
e Host Tests
e Virtual Switching Tests
e PHY-to-VM Tests
¢ VM-to-VM Tests
¢ VXLAN Tests

Test Report 10

https://01.org/packet-processing/intel%C2%AE-onp-servers

Intel® ONP Server Performance u
Test Report l n tel

3.0 Platform Specifications

3.1 Hardware Ingredients

Table 3-1. Hardware Ingredients

Item

Description

Server Platform

Intel® Server Board S2600WT2 DP (Formerly Wildcat Pass)
2 x 1GbE integrated LAN ports
Two processors per platform

Chipset

Intel® C610 series chipset (Formerly Wellsburg)

Processor

Intel® Xeon® Processor E5-2697 v3 (Formerly Haswell)

Speed and power: 2.60 GHz, 145 W

Cache: 35 MB per processor

Cores: 14 cores, 28 hyper-threaded cores per processor for 56 total hyper-threaded cores
QPI: 9.6 GT/s

Memory types: DDR4-1600/1866/2133,

Reference: http://ark.intel.com/products/81059/Intel-Xeon-Processor-E5-2697-v3-35M-
Cache-2_60-GHz

Memory

Micron 16 GB 1Rx4 PC4-2133MHz, 16 GB per channel, 8 Channels, 128 GB Total

Local Storage

500 GB HDD Seagate SATA Barracuda 7200.12 (SN:9VMKQZMT)

PCIe Port 3a and Port 3c x8
NICs 2 x Intel® Ethernet CAN X710-DA2 Adapter (Total: 4 x 10GbE ports)
(Formerly Fortville)
BIOS Version: SE5C610.86B.01.01.0008.021120151325
Date: 02/11/2015
11 Test Report

http://ark.intel.com/products/81059/Intel-Xeon-Processor-E5-2697-v3-35M-Cache-2_60-GHz
http://ark.intel.com/products/81059/Intel-Xeon-Processor-E5-2697-v3-35M-Cache-2_60-GHz

. Intel® ONP Server Performance
l n tel Test Report

3.2 Software Version

Table 3-2. Software Versions

System Capability Version
Host Operating System Fedora 21 x86_64 (Server version)
Kernel version: 3.17.4-301.fc21.x86_64
VM Operating System Fedora 21 (Server version)
Kernel version: 3.17.4-301.fc21.x86_64
libvirt libvirt-1.2.9.3-2.fc21.x86_64
QEMU QEMU-KVM version 2.2.1

http://wiki.gemu-project.org/download/gemu-2.2.1.tar.bz2

DPDK DPDK 2.0.0
http://www.dpdk.org/browse/dpdk/snapshot/dpdk-2.0.0.tar.gz

OVS with DPDK-netdev Open vSwitch 2.4.0
http://openvswitch.org/releases/openvswitch-2.4.0.tar.gz

3.3 Boot Settings

Table 3-3. Boot Settings

System Capability Description

Host Boot Settings HugePage size = 1 G; no. of HugePages = 16

HugePage size = 2 MB; no. of HugePages = 2048
intel_iommu=off

Hyper-threading disabled: isolcpus = 1-13,15-27
Hyper-threading enabled: isolcpus = 1-13,15-27,29-41,43-55

VM Kernel Boot Parameters | GRUB CMDLINE LINUX="rd.lvm.lv=fedora-server/root
rd.lvm.lv=fedora-server/swap default hugepagesz=1G hugepagesz=1G
hugepages=1 hugepagesz=2M hugepages=1024 isolcpus=1,2 rhgb
quiet"

Test Report 12

http://wiki.qemu-project.org/download/qemu-2.2.1.tar.bz2
http://www.dpdk.org/browse/dpdk/snapshot/dpdk-2.0.0.tar.gz
http://openvswitch.org/releases/openvswitch-2.4.0.tar.gz

Intel® ONP Server Performance

Test Report

3.4 Compile Options

Table 3-4. Compile Option Configurations

ntel)

System Capability

Configuration

DPDK Compilation

CONFIG_RTE_BUILD_COMBINE_LIBS=y
CONFIG_RTE_LIBRTE_VHOST=y
CONFIG_RTE_LIBRTE_VHOST_USER=y
DPDK compiled with "-0fast -g"

OVS Compilation

OVS configured and compiled as follows:

#./configure --with-dpdk=<DPDK SDK PATH>/x86 64-native-linuxapp \

CFLAGS="-0Ofast -g"
make CFLAGS="-Ofast -g -march=native"

DPDK Forwarding
Applications

Build L3fwd: (in 13fwd/main.c)
#define RTE TEST RX DESC DEFAULT 2048
#define RTE TEST TX DESC_DEFAULT 2048

Build L2fwd: (in 12fwd/main.c)

#define NB MBUF 16384

#define RTE TEST RX DESC_DEFAULT 2048
#define RTE TEST TX DESC_DEFAULT 2048

Build testpmd: (in test-pmd/testpmd.c)
#define RTE TEST RX DESC_DEFAULT 2048
#define RTE TEST TX DESC_DEFAULT 2048

13

Test Report

. I Intel® ONP Server Performance

l n te Test Report

3.5 Operating System Settings

Table 3-5. Software Versions

System Capability Settings

Linux OS Services Settings systemctl disable NetworkManager.service
chkconfig network on

systemctl restart network.service
systemctl stop NetworkManager.service
systemctl stop firewalld.service
systemctl disable firewalld.service
systemctl stop irgbalance.service
killall irgbalance

systemctl disable irgbalance.service
service iptables stop

echo 0 > /proc/sys/kernel/randomize va space
SELinux disabled

HH H FH H FH H FH H = H = H I

net.ipvéd.ip forward=0

Uncore Frequency Settings | Set the uncore frequency to the max ratio.

PCI Settings # setpci -s 00:03.0 184.1
0000000
setpci -s 00:03.2 184.1
0000000

setpci -s 00:03.0 184.1=0x1408
setpci -s 00:03.2 184.1=0x1408

Linux Module Settings rmmod ipmi_msghandler

#
rmmod ipmi_si
#

rmmod ipmi_devintf

Test Report 14

Intel® ONP Server Performance u
Test Report l n te l

4.0 Test Configurations

The test setup is shown in Figure 4-1. The system-under-test is Intel® ONP Server Reference
Architecture (version 1.5). The traffic is generated by Ixia running RFC 2544 (IxNetwork 7.40.929.15
EA; Protocols: 4.40.1075.13; Ix0OS: Ix0OS 6.80.1100.7 EA). The maximum theoretical system
forwarding throughput is 40Gbps aggregated across four 10GE ports, except for VXLAN tests which
use two ports. Physical ports are paired (one ingress and one egress), i.e., one 10Gbps bidirectional
flow “consumes” two ports. Unless otherwise stated, all tests are for zero packet loss.

The VM network interface used is vhost-user with DPDK acceleration. Vhost-user information is
available at http://dpdk.readthedocs.org/en/latest/prog_guide/vhost_lib.html along with DPDK 2.0
documentation.

Open vSwitch with DPDK

Fedora 21 / KVM

NIC (4 x 10GE - 40 Gigabit Ethernet)

Port 1
Port 2
Port 3
Port 4

J&=—40Gbps

Ixia Traffic Generator

Figure 4-1. High-Level Overview of Test Setup

15 Test Report

https://www.ietf.org/rfc/rfc2544.txt
http://dpdk.readthedocs.org/en/latest/prog_guide/vhost_lib.html

Intel® ONP Server Performance

(lntel) Test Report

Allocation of cores has a large impact on performance. For tests in this document, core configurations
include physical and hyper-threaded options. Tests showing the impact on performance when adding
cores and using hyper-threading are included. Table 4-1 shows combinations of physical and hyper-
threaded cores used for various test cases.

Table 4-1. Number of Cores Used for Each Test Category

Physical Cores Hyper-Threaded Cores
Test 1 2 3 4 1 2 3 4
Host Tests
Virtual Switching Tests v v v v
PHY-to-VM Tests v
VM-to-VM Tests v
VXLAN Tests v v

4.1 Traffic Profiles

The IP traffic profile used conforms to RFC 2544,
e Frame sizes (bytes): 64, 128, 256, 512, 1024, 1280, and 1518
e L3 protocol: IPv4
e L4 protocol: UDP
e All tests are bidirectional with the same data rate being offered from each direction.

e Test duration (per packet size) is 60 seconds, except for latency and Packet Delay Variation (PDV)
soak tests, which are run for 1 hour.

e For VXLAN, a header is used to encapsulate IP packets per RFC 7348.

Test Report 16

https://www.ietf.org/rfc/rfc2544.txt
https://tools.ietf.org/html/rfc7348

Intel® ONP Server Performance o
Test Report I n tel

5.0 Test Metrics

5.1 Packet Processing Performance Metrics

RFC 2544 is an Internet Engineering Task Force (IETF) RFC that outlines a benchmarking methodology
for network interconnect devices. The methodology results in performance metrics (e.g., latency, frame
loss percentage, and maximum data throughput).

In this document, network “throughput” (measured in millions of frames per second) is based on
RFC 2544, unless otherwise noted. “Frame size” refers to Ethernet frames ranging from the smallest
frames of 64 bytes to the largest of 1518 bytes.

RFC 2544 types of tests are as follows:

e Throughput tests define the maximum number of frames per second that can be transmitted
without any error. Throughput is the fastest rate at which the count of test frames transmitted by
the DUT is equal to the number of test frames sent to it by the test equipment. Test time during
which frames are transmitted must be at least 60 seconds.

¢ Latency tests measure the time required for a frame to travel from the originating device through
the network to the destination device.

¢ Frame loss tests measure the network’s response in overload conditions—a critical indicator of
the network’s ability to support real-time applications in which a large amount of frame loss rapidly
degrades service quality.

e Burst tests assess the buffering capability of a switch. They measure the maximum number of
frames received at full-line rate before a frame is lost. In carrier Ethernet networks, this
measurement validates the excess information rate as defined in many service-level agreements
(SLAs).

e System recovery tests characterize speed of recovery from an overload condition.
¢ Reset tests characterize the speed of recovery from device or software reset.

“Test duration” refers to the measurement period for, and particular packet size with, an offered load
and assumes the system has reached a steady state. Using the RFC 2544 test methodology, this is
specified as at least 60 seconds.

17 Test Report

https://www.ietf.org/rfc/rfc2544.txt
https://www.ietf.org/rfc/rfc2544.txt
https://www.ietf.org/rfc/rfc2544.txt
https://www.ietf.org/rfc/rfc2544.txt

. Intel/® ONP Server Performance
l n tel Test Report

5.2 Throughput

The throughput test data provided in this document represents “platform throughput” as measured by
the Ixia traffic generator. Switching performance metrics include the number of switching operations
for the particular configuration. This is shown in Table 5-1 using two examples of configurations with
two and three switching operations, respectively. Figure 5-1 shows the two configuration examples.

Table 5-1. Throughput and Switching Performance Metrics

Configuration Examples
Parameter PHY-OVS-PHY (four ports) PHY-VM-VM-PHY (two ports)

Physical Ports 4 2

Flows per Port (in each direction) 1 1

Total Flows 4 2

Switching Operations 2 3

Throughput (packets/sec) 33,783,781 2,830,877

128B packets 100% of line rate 16.8% of line rate
Switching Performance (packets/sec) 67,567,562 5,661,754

128B packets 200% of line rate 50.4% of line rate

—_———— e e — o,

Figure 5-1. Examples of Configurations with Two and Three Switching Operations

Test Report 18

Intel® ONP Server Performance o
Test Report I n tel

5.2.1 Layer 2 Throughput

This test determines the DUT’s maximum Layer 2 forwarding rate without traffic loss, as well as
average and minimum/maximum latency for different packet sizes.

This test is performed full duplex with traffic transmitting in both directions.

The DUT must perform packet parsing and Layer 2 address lookups on the ingress port, and then
modify the header before forwarding the packet on the egress port.

5.2.2 Layer 3 Throughput

This test determines the DUT’s maximum IPv4 Layer 3 forwarding rate without packet loss, as well as
average and minimum/maximum latency for different packet sizes.

This test is performed full duplex with traffic transmitting in both directions.

The DUT must perform packet parsing and route lookups for Layer 3 packets on the ingress port and
then forward the packet on the egress port without modifying the header.

5.3 Latency

With latency (i.e., packet delay) and packet delay variation, it is generally the worst-case performance
that must be considered. Outliers can create customer disappointment at the carrier scale and cost
service providers.

The RFC 2544 measurement of latency is extensively used in traditional testing. NFV requires more
information on latency, including packet delay variation. Ideally, the delay of all packets should be
considered, but in practice some form of sampling is needed (this may not be periodic sampling).

Average and minimum/maximum latency numbers are usually collected with throughput tests;
however, the distribution of latency is a more meaningful metric (i.e., a test that collects latency
distribution for different packet sizes and over an extended duration to uncover outliers; latency tests
should run for at least 1 hour and ideally for 24 hours). Collecting test data for all traffic conditions
can take a long time. One approach is to use the highest throughput that has demonstrated zero
packet loss for each packet size as determined with throughput tests.

RFC 2679 defines a metric for one-way delay of packets across Internet paths and describes a
methodology for measuring “Type-P-One-way-Delay” from source to destination.

5.4 Packet Delay Variation (PDV)

RFC 3393 provides definitions of PDV metrics for IP packets and is based on RFC 2679. This RFC notes
that variation in packet delay is sometimes called “jitter” and that this term causes confusion because
it is used in different ways by different groups of people. The ITU Telecommunication Standardization
Sector also recommends various delay variation metrics [Y.1540] [G.1020]. Most of these standards
specify multiple ways to quantify PDV.

RFC 5481 specifies two forms of measuring variation of packet delay:

e Inter-Packet Delay Variation (IPDV) is where the reference is the previous packet in the stream
(according to a sending sequence), and the reference changes for each packet in the stream. In this

19 Test Report

https://www.ietf.org/rfc/rfc2544.txt
https://tools.ietf.org/html/rfc2679
https://www.ietf.org/rfc/rfc3393.txt
https://tools.ietf.org/html/rfc2679
https://www.itu.int/rec/T-REC-Y.1540/en
https://www.itu.int/rec/T-REC-G.1020-200311-S/en
https://tools.ietf.org/html/rfc5481

Intel® ONP Server Performance

inteD

formulation, properties of variation are coupled with packet sequence. This form was called
Instantaneous Packet Delay Variation in early IETF contributions and is similar to the packet spacing
difference metric used for inter-arrival jitter calculations in RFC 3550.

e Packet Delay Variation (PDV) is where a single reference is chosen from the stream based on specific
criteria. The most common criterion for the reference is the packet with the minimum delay in the
sample. This term derives its name from a similar definition for Cell Delay Variation, an ATM
performance metric [1.356].

Both metrics are derived from “one-way-delay” metrics and, therefore, require knowledge of time at
the source and destination. Results are typically represented by histograms showing statistical
distribution of delay variation. Packet loss has great influence for results (extreme cases are described
in the RFC). For reporting and SLA purposes, simplicity is important and PDV lends itself better

(e.g., percentiles, median, mean, etc.). PDV metrics can also be used with different stream
characteristics, such as Poisson streams [RFC 3393] and periodic streams [RFC 3432], depending on
the purpose and testing environment.

Test Report 20

https://www.ietf.org/rfc/rfc3550.txt
https://tools.ietf.org/html/rfc5481#ref-I.356
https://www.ietf.org/rfc/rfc3393.txt
https://tools.ietf.org/html/rfc3432

Intel® ONP Server Performance
Test Report

6.0

Test Cases

A summary of test cases is shown in Table 6-1.

Table 6-1. Summary of Test Cases

Packet Size Test Flows per Port in
Ref. Test Description Metrics (Bytes) Duration Both Directions
Host (PHY-PHY)
L3 Fwd (no pkt modification) | Throughput 64, 128, 256, 60 sec One flow/port in
7.1 4 ports Latency (avg) 512, 256, 512, both directions
1024, 1280, 1518
L2 Fwd (with pkt Throughput 64, 128, 256, 60 sec One flow/port in
7.1 modification) Latency (avg) 512, 256, 512, both directions
4 ports 1024, 1280, 1518
vSwitch (PHY-OVS-PHY)
L3 Fwd Throughput 64, 128, 256, 60 sec One flow/port in
4 ports Latency (avg) 512, 256, 512, both directions
1024, 1280, 1518
75 1000 flows/port in
’ both directions
2000 flows/port in
both directions
L3 Fwd Packet Delay 64B 1 hr One flow/port in
4 ports Variation both directions
Maximum load (from test-
7.3
case 3) for zero packet loss.
Core configuration chosen
from test-case 3.
One VM (PHY-VM-PHY)
Single VM (vhost-user) Throughput 64, 128, 256, 60 sec One flow/port in
L3 Fwd Latency (m|n, 512, 256, 512, both directions
7.4 | 4 ports max, avg) 1024, 1280, 1518
1000 flows/port in
both directions
Two VMs (PHY-VM-VM-PHY)
Two VMs in series (vhost- Throughput 64, 128, 256, 60 sec One flow/port in
user) Latency (min, 512, 256, 512, both directions
7.5 | L3 Fwd max, avg) 1024, 1280, 1518
2 ports 2000 flows/port in
both directions
VXLAN encap/decap using Throughput 64, 72, 128, 256, 60 sec One flow/port in
7 vSwitch TEP Latency (m|n, 512, 768, 1024, both directions
6 | 13 Fwd max, avg) 1280, 1468
2 ports
21 Test Report

intel)

7.0 Test Results

Intel® ONP Server Performance

Test Report

7.1

The test setup for the host is shown in Figure 7-1.

Host Throughput (PHY-PHY)

Figure 7-1. Host Setup (PHY-PHY)

As shown in Table 7-1, host tests attempt to achieve system throughput of 40Gbps, using the 4-port

configuration with 4 physical cores.

Table 7-1. Host Test Configurations

Configuration Variable
TX/RX Flows per Hyper-
Queues per Port in Each Physical Threaded
Test Ports Core Direction Cores Cores
L2 Forwarding 4 1 1 4 —
L3 Forwarding 4 1 1 4 —

Test Report

22

Intel® ONP Server Performance o
Test Report (I n tel

For L2 tests, the full-line rate is achieved for all packet sizes as shown in the results in Table 7-2.

Table 7-2. L2 Test Results for Host

L2 Forwarding — Bidirectional
Throughput Achieved with Zero Packet Loss
Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 28,669 42,662,748 72 14,552
72 31,222 42,420,571 78 13,608
128 40,000 33,783,756 100 37,606
256 40,000 18,115,929 100 36,964
512 40,000 9,398,488 100 39,504
768 40,000 6,345,174 100 43,534
1024 40,000 4,789,270 100 49,052
1280 40,000 3,846,150 100 53,755
1518 40,000 3,250,973 100 58,041
Affinity Details | # ./I2fwd -c 1e -n 4 --socket-mem 1024,0 -- -p Of

For L3 tests, the full-line rate is achieved for all packet sizes from 128 bytes as shown in Table 7-3.

Table 7-3. L3 Test Results for Host

L3 Forwarding — Bidirectional
Throughput Achieved with Zero Packet Loss
Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 40,000 59,523,774 100 21,831
72 40,000 54,347,790 100 24,791
128 40,000 33,783,750 100 20,681
256 40,000 18,115,928 100 23,083
512 40,000 9,398,484 100 28,781
768 40,000 6,345,173 100 34,447
1024 40,000 4,789,268 100 40,284
1280 40,000 3,846,151 100 46,610
1518 40,000 3,250,971 100 51,822
Affinity Details # ./13fwd -c 1(? -n 4 --socket-mem 1024,0 -- -p Oxf \
--config="(0,0,1),(1,0,2),(2,0,3),(3,0,4)"

23 Test Report

. ’ Intel/® ONP Server Performance
l n tel Test Report

7.2 Virtual Switching Throughput (PHY-OVS-
PHY)

Figure 7-2 shows the test setup for PHY-OVS-PHY with four 10GbE ports. Maximum theoretical
platform throughput is 40Gbps (four flows aggregated).

Open vSwitch with DPDK

[\ /[\
Fedora 21 / KVM

[\ /
NIC (4 x 10GE - 40 Gigabit Ethernet)

Figure 7-2. Setup for Virtual Switching Performance Tests (PHY-OVS-PHY)

Test Report 24

Intel® ONP Server Performance o
Test Report (I n tel

Virtual switching tests attempt to achieve aggregated system throughput of 40Gbps using 4 ports to
compare the following configuration variables (Table 7-4 shows configurations tested for each type of
test).

Configuration variables:

e Native OVS or OVS with DPDK-netdev
e 1,2, or 4 physical cores
e One flow per port (total four flows) or 2K flows per port (total 8K flows)
e Hyper-threading or no hyper-threading i.e.
o 1 physical core vs 2 hyper-threaded cores
o 2 physical cores vs 4 hyper-threaded cores

All tests are L3 forwarding.

Table 7-4. Configurations for Virtual Switching Tests

Configuration Variable
TX/RX Flows per Port Hyper-
Queues per in each Physical Threaded

Type of Test Ports Core Direction Cores Cores
Native OVS 4 1 1 1 0
OVS with DPDK-netdev 4 1 1 1 0,2
Core scaling (L3 Forwarding) 4 1 1 1,2,4
Core scaling (L3 Forwarding) 4 1 2K 1,2,4
Impact of hyper-threading 4 1 1 1,2 2,4
Impact of hyper-threading 4 1 2K 1,2 2,4

25 Test Report

intel)

7.2.1

This test compares Native OVS and OVS with DPDK-netdev.

Intel® ONP Server Performance

Test Report

Native OVS and OVS with DPDK-netdev

Table 7-5 Configuration variables for Native OVS and OVS with DPDK-netdev

Configuration variables

Physical Cores

Hyper-threaded cores

Native OVS

1

none or 2

OVS with DPDK-netdev

1

none or 2

Table 7-6. Native OVS, no hyper-threading

L3 Forwarding — Bidirectional
Throughput Achieved with Zero Packet Loss
Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 567 844,330 3 18,917
72 606 823,453 3 17,501
128 1,012 854,832 5 18,193
256 1,882 852,468 9 19,329
512 3,661 860,236 18 20,254
768 5,479 869,096 27 21,097
1024 7,238 866,663 36 21,360
1280 8,998 865,190 45 21,864
1518 10,680 868,028 53 21,614
0% Loss resolution
Affinity Details | PortO IRQ's Affinity to Icore2
Portl IRQ's Affinity to lcore3

Table 7-7. Native OVS, with hyper-threading

L3 Forwarding — Bidirectional

Throughput Achieved with Zero Packet Loss

Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 741 1,103,295 4 18,179
256 2,424 1,097,671 12 18,048

Affinity Details

0% Loss resolution

Port0 IRQ's Affinity to Icore2
Portl IRQ's Affinity to Icore3

Test Report

26

Intel® ONP Server Performance o
Test Report I n tel

Table 7-8. OVS with DPDK, no hyper-threading

L3 Forwarding — Bidirectional
Throughput Achieved with Zero Packet Loss
Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)

64 11,267 16,766,108 28 14,240
72 12,311 16,726,835 31 13,748
128 19,852 16,766,876 50 34,764
256 36,984 16,749,871 92 20,427
512 40,000 9,398,497 100 18,582
768 40,000 6,345,179 100 24,298
1024 40,000 4,789,273 100 16,029
1280 40,000 3,846,154 100 14,324
1518 40,000 3,250,973 100 31,300

1PMD thread based OVS and 0% Loss resolution

Affinity Details | # ./ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=4
4P from 2 cards

Table 7-9. OVS with DPDK-netdev, with hyper-threading

L3 Forwarding — Bidirectional
Throughput Achieved with Zero Packet Loss
Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 12,891 19,183,078 32 14,245
72 14,051 19,091,305 35 13,979
128 23,139 19,543,183 58 23,204
256 40,000 18,115,938 100 38,756
512 40,000 9,398,499 100 18,539
768 40,000 6,345,179 100 17,382
1024 40,000 4,789,273 100 17,446
1280 40,000 3,846,155 100 20,814
1518 40,000 3,250,976 100 20,760
2PMD thread based OVS and 0% Loss resolution
Affinity Details | #./ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=40000004
4P from 2 cards

27 Test Report

. » Intel/® ONP Server Performance
l n tel Test Report

16
14
17.4,

¥ X 16.5x

8

6

4

2

0 —— -

64 256

Packet size (Bytes)

Performance Ratio (PPS)
.
(=]

W Native OVS (with HTT) B OVS with DPDK-netdev (No HTT) B OVS with DPDK-netdev (with HTT)

Figure 7-3. Relative throughput performance of Native OVS and OVS with DPDK-netdev
using one physical core

Test Report 28

Intel® ONP Server Performance

Test Report

7.2.2

Core Scaling— One Flow per Port (Total 4 Flows)

Figure 7-4 shows scaling performance with 1, 2, and 4 physical cores using 4 flows. Maximum
theoretical throughput is indicated by the “top purple line” (packets-per-second on the Y-axis).

70,000,000

60,000,000

50,000,000

40,000,000

30,000,000

Packets/second

20,000,000

10,000,000

o4 72 128 256 512

. 1 core

2 cores

Packet size (bytes)

B 4 cores == A0G Theoretical

768 1024

1280 1518

Figure 7-4. OVS with DPDK — Host Throughput with HT Disabled (4 Flows)

The test data in Table 7-10 shows the smallest packet size that achieves line rate when using 1, 2,
and 4 physical cores, respectively.

Table 7-10. Packet Sizes that Achieve Line Rate Using 1, 2, and 4 Cores (with 4 Flows)

Packet Size (Bytes)
No. of Physical Cores 128B 256B 512B
1 Physical Core 16,766,876 16,749,871 9,398,497
Throughput (packets/sec) (49% of line rate) (92% of line rate) (100% of line-rate)
2 Physical Cores 30,387,023 18,115,940 9,398,496
Throughput (packets/sec) (90% of line rate) (100% of line-rate) (100% of line rate)
4 Physical Cores 33,783,781 18,115,939 9,398,490
Throughput (packets/sec) (100% of line-rate) (100% of line rate) (100% of line rate)

29

Test Report

7.2.3

Intel/® ONP Server Performance
Test Report

Core Scaling— 2K Flows per Port (Total 8K Flows)

Figure 7-5 shows scaling performance with 1, 2, and 4 physical cores, using 8K flows. Maximum
theoretical throughput is indicated by the top purple line (packets-per-second on the Y-axis).

70000000

60000000

50000000

40000000

Packets/second
W
2
2
2
o

20000000

10000000

64

72 128

. 1 core

256

. ? cores

512 768 1024

B 4 cores === 40G Theoretical

1280 1518

Figure 7-5. OVS with DPDK — Host Throughput with HT Disabled (8K flows)

The test data shown in Table 7-11 shows the smallest packet size that achieves line rate when using

1, 2, and 4 physical cores, respectively.

Table 7-11. Packet Sizes that Achieve Line Rate Using 1, 2, and 4 Cores (with 8K Flows)

Packet Size (Bytes)

No. of Physical Cores 128B 256B 768B
1 Physical Core 9,058,613 9,043,478 6,345,179
Throughput (packets/sec) (27% of line rate) (50% of line rate) (100% of line-rate)
2 Physical Cores 19,085,895 18,115,935 6,345,178
Throughput (packets/sec) (56% of line rate) (100% of line-rate) (100% of line rate)
4 Physical Cores 18,115,935 18,115,941 6,345,177
Throughput (packets/sec) (100% of line-rate) (100% of line rate) (100% of line rate)

Test Report

30

Intel® ONP Server Performance u v
Test Report l n tel

7.2.4 64-Byte Performance

7.2.3.1 Core Scalability for 64B Packets

Figure 7-6 shows scaling performance of 64-byte packets with 1, 2, and 4 physical cores with the
following number of flows configured:

e 4 total flows (1 flow per port)
e 4K total flows (1K flows per port)
¢ 8K total flows (2K flows per port)

50,000,000

45,000,000

40,000,000
35,000,000
30,000,000
25,000,000
20,000,000
15,000,000
10,000,000
5,000,000 I I

4 flows 4K flows 8K flows

Packets/second

W 1lcore MW2cores W4cores

Figure 7-6. Core Scaling for 64B Packets with 4 Flows and 4K and 8K Flows

31 Test Report

Intel/® ONP Server Performance
Test Report

Test data for measured throughput for 64B packets in Table 7-12 shows fairly linear scaling when
using 1, 2, or 4 cores up to 8K flows. Due to the current configuration of OVS hash lookup tables,

significant degradation in performance is observed when using more than 8K flows. This is related to
the size of the EMC (exact match cache), which is a hash table in OVS. The current size of the EMC is

set to 8K (flows) by default. Using this default configuration, larger numbers of flows may use a
slower data path (not the EMC).

In Table 7-12, there is ~46% performance drop from 4 flows to 8K flows for 1 physical core, while 4K
flows show ~36% performance drop compared to 4 flows for 1 physical core.

Table 7-12. 64B Performance Scaling with 1, 2, and 4 Cores

1 Physical Core 2 Physical Cores 4 Physical Cores
Number Measured throughput Measured throughput Measured throughput
of Flows Packets/sec | Line Rate % | Packets/sec Line Rate % Packets/sec Line Rate %
4 16,766,108 28 30,347,400 51 47,266,489 79
4K 10,781,154 18 22,233,135 37 45,079,543 75
8K 9,054,720 15 19,067,981 32 39,900,258 67
7.2.3.2 Performance with Hyper-Threading

Figure 7-7 shows that hyper-threading increases performance of one 64-byte flow by 14% when one

core is used and 17% when two cores are used.

Figure 7-7. Performance Scaling with Hyper-Threading Using 4 Flows (1 Flow per Port)

40,000,000

35,000,000

30,000,000

25,000,000

20,000,000

Packets/second

15,000,000

10,000,000

5,000,000

U e

1 core

B HT disabled

B HT enabled

2 cores

Test Report

32

Intel® ONP Server Performance

Test Report

Figure 7-8 shows hyper-threading increases performance of 4K, 64-byte flows by 49% when 1 core is
used and 37% when 2 cores are used.

30,000,000

25,000,000

20,000,000

15,000,000

Packets/second

10,000,000

5,000,000

T

1 core

s

2 cores

M HT disabled MHT enabled

Figure 7-8. Performance Scaling with Hyper-Threading with 8K Flows (2K Flows per Port)

The test data in Table 7-13 shows the measured throughput for 64B packets with 4-flow and 8K-flow
configurations.

Table 7-13. 64B Performance with/without Hyper-Threading for 4 Flows and 8K Flows

2 Hyper-threaded

4 Hyper-threaded

(15% of maximum)

(23% of maximum)

1 Physical Core Cores 2 Physical Cores Cores
Number Throughput Throughput Throughput Throughput
of Flows (packets/sec) (packets/sec) (packets/sec) (packets/sec)
4 16,766,108 pps 19,183,077 pps 30,347,400 pps 35,469,109 pps
(28% of maximum) (32% of maximum) (51% of aximum) (60% of maximum)
8K 9,054,720 pps 13,485,897 pps 19,067,981 pps 26,088,780 pps

(32% of maximum)

(44% of maximum)

33

Test Report

. Intel/® ONP Server Performance
l n tel Test Report

7.3 Virtual Switching Latency (PHY-OVS-PHY)

As described in section 5.4, RFC 5481 specifies two forms of packet delay variation (PDV). The Ixia
packet generator used does not support RFC 4581 for PDV or the measurement of IPDV. The
generator does provide a PDV measurement with three modes (FIFO, LILO, and FILO). The RFC 5481
metrics of PDV and IPDV, however, can be computed off-line, using data capture and post-processing.
Techniques and tools for doing this will be discussed in a future Intel® ONP test document.

Figure 7-9 shows the DUT configuration used for measuring latency through the vSwitch.

Open vSwitch with DPDK

[\ / \
Fedora 21 / KVM

-
I
|
I
I
I
I
I
I
I
I
|
I
|
I
I
I
I
I
I
|

—

Figure 7-9. Virtual Switching Setup for Measuring Latency (PHY-OVS-PHY)

Test Report 34

https://tools.ietf.org/html/rfc5481

Intel® ONP Server Performance u
Test Report (l n tel

Figure 7-10 shows PDV for 64B packets during a one hour test for each target load. The latency values
represent the aggregate of latency measurements for all flows during the test run (i.e., for each target
load). The target load is increased from 10% of line rate up to 80% of line-rate in 10% increments.
The target load of 80% represents the maximum load without packet loss as determined by test case
three (Virtual Switching Tests — Throughput).

To illustrate the results, the following is extrapolated from the graph:
e Target load is 60% of line rate (orange bars).

e Approximately 30% of packets during a one hour test have latency between 4 and
5.7 microseconds.

Approximately 70% of packets during a one hour test have latency between 5.7 and
8 microseconds.

Total number of packets is 100% of line rate.

Target Load: m10% H20% 30% W 40% H50% 60% u70% H 80%

100%
T 90%
o
B sou
B
5 0
g 70%
2 gon
4
2
T 50%
=4
-
3
S 40%
K
B 30%
=]
3]
o 20%
g
5
& 10% I

o R __ _ l —m
2.82-4 4-5.66 5.66-8 8-11.32 >11.32

Packet Delay (Latency) (microseconds)

Figure 7-10. Packet Delay Variation with Varying Load (64B Packets, Zero Packet Loss)

35 Test Report

. Intel/® ONP Server Performance
l n tel Test Report

7.4 One VM Throughput (PHY-VM-PHY)

This test uses a single VM with two bidirectional flows (total 4 flows) using 4 10GE ports as shown in
Figure 7-11. Maximum theoretical platform throughput is 40Gbps (four flows aggregated).

Figure 7-11. Setup for Performance Tests with One VM (PHY-VM-PHY)

Note: Four switching operations take place while packets are being routed through the system.

VM tests attempt to achieve aggregated system throughput of 40Gbps using 4 ports to compare the
following configuration variables (Figure 7-14 shows configurations tested for each type of test).

Configuration variables:

« Native OVS or OVS with DPDK-netdev

e 1 or 2 physical cores

e One flow per port (total four flows) or 1K flows per port (total 4K flows)

¢ Hyper-threading or no hyper-threading i.e. 1 physical core vs 2 hyper-threaded cores

All tests are L3 forwarding.

Test Report 36

Intel® ONP Server Performance

Test Report

Table 7-14. Configurations for Virtual Switching Tests

intel)

Configuration Variable
TX/RX Flows per Port Hyper-
Queues per in each Physical Threaded

Type of Test Ports Core Direction Cores Cores
Native OVS 1 1 1 0
OVS with DPDK-netdev 4 1 1 1 0,2
Core scaling - 1 flow per port 4 1 1 1,2, 4
Core scaling - 2k flows per port 4 1 2K 1,2, 4
Impact of hyper-threading - 1 4 1 1 1,2 2,4
flow per port
Impact of hyper-threading - 2k a 1 2K 1,2 2,4
flows per port

37

Test Report

intel)

7.4.1

Intel® ONP Server Performance
Test Report

Native OVS and OVS with DPDK-netdev

This test compares Native OVS and OVS with DPDK-netdev. In the case of OVS with DPDK-netdev
tests include one or two physical cores and with or without hyper-threading.

Table 7-15. Configuration variables for Native OVS and OVS with DPDK-netdev

Configuration variables

Physical Cores

Hyper-threaded cores

Native OVS

1

OVS with DPDK-netdev

1,2

none or 2

Table 7-16. Native OVS, no hyper-threading (1 physical core)

L3 Forwarding — Bidirectional

Throughput Achieved with Zero Packet Loss

Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 316 470,266 2 29,044
256 1031 467,145 5 35,548

Affinity Details

0% Loss resolution

Port0 IRQ's Affinity to lcore2
Portl IRQ's Affinity to Icore3

On a VM:

./testpmd -c 0x6 -n 4 -- --burst=64 -i --txd=2048 --rxd=2048 --txqflags=0xf00

Table 7-17. OVS with DPDK-netdev, no hyper-threading (1 physical core)

Minimum Average Maximum
Packet size Aggregate Throughput Line Rate Latency Latency Latency

(Bytes) (Packets/sec) % (us) (ps) (ps)
64 4,796,202 8 13.7 57.2 892
72 4,746,944 9 9.3 97.6 1,638
128 4,681,890 14 11.4 59.0 708
256 4,367,109 24 9.4 43.1 157
512 4,064,758 43 12.9 104.9 1,420
768 2,915,991 46 12.7 133.7 2,198
1024 2,386,169 50 12.8 122.2 2,154
1280 2,076,170 54 14.8 99.8 908
1518 1,852,326 57 10.7 34.3 282

Test Report

Intel® ONP Server Performance u v
Test Report l n tel

Table 7-18. OVS with DPDK-netdev, with hyper-threading (1 physical core)

L3 Forwarding — Bidirectional
Throughput Achieved with Zero Packet Loss
Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 4,113 6,119,796 10 33,582
72 4,074 5,535,093 10 20,892
128 6,781 5,727,081 17 35,938
256 11,808 5,347,922 30 34,206
512 19,697 4,628,118 49 51,683
768 18,150 2,879,185 45 43,101
1024 19,659 2,353,759 49 44,261
1280 21,824 2,098,483 55 33,885
1518 23,835 1,937,188 60 36,741
2PMD thread based OVS and 0.0% Loss resolution
Affinity Details # ./ovs-vsctl set Open_vSwitch . other__config:pmd-cpu-mask=200002
./testpmd -c 0x3 -n 4 -- --burst=64 -i --txd=2048 --rxd=2048 --txqflags=0xf00
4P from 2 cards

14

12
13.0x
11.4x

6

4

2

. [[

64 256

Packet size (Bytes)

[y
o

00

Performance Ratio (PPS)

HNative OVS ENoHTT B With HTT

Figure 7-12. Relative throughput performance with a single VM comparing Native OVS and
OVS with DPDK-netdev using one physical core

39 Test Report

Intel® ONP Server Performance

(i n tel ”) Test Report

Table 7-19 shows the VM L3fwd throughput performance of OVS with DPDK-netdev using 2 physical
cores.

Table 7-19. OVS with DPDK-netdev, no hyper-threading (2 physical cores)

L3 Forwarding — Bidirectional

Throughput Achieved with Zero Packet Loss
Packet Size Mbps Packets/sec % Line Rate Average Latency (ns)
64 5,775 8,594,338 14 20,172
256 18,576 8,412,957 46 32,590

4P from two DUAL cards
Affinity Details | # ./ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=cOn a VM:
./testpmd -c 0x6 -n 4 -- --burst=64 -i --txd=2048 --rxd=2048 --txgflags=0xf00

16

14

12

5 —— I —— I
64 256

Packet size (Bytes)

Performance Ratio (PPS)
E= [=a] o0 5

M

m Native OVS m OVS with DPDK single core m OVS with DPDK two cores

Figure 7-13. Relative throughput performance with a single VM comparing one and two
physical cores (no hyper-threading)

Test Report 40

Intel® ONP Server Performance u
Test Report l n tel

7.4.3 OVS with DPDK-netdev - 4k Flows

This test compares single VM throughput with DPDK-netdev using 1flow per port (total 4 flows) and 1k
flows per port (total 4k flows).

Table 7-20. Configuration variables for OVS with DPDK-netdev

Configuration variables Physical Cores Hyper-threaded cores

OVS with DPDK-netdev 1 none

Table 7-21 show the L3fwd performance with 4K flows (1 OVS PMD thread).

Table 7-21. OVS with DPDK-netdev, 4k flows

Minimum Average Maximum
Packet size Aggregate Throughput Line Rate Latency Latency Latency

(Bytes) (Packets/sec) % (Hs) (ps) (ps)
64 3,069,777 5 8.2 73.7 1,003
72 3,013,002 6 10.6 92.1 1,713
128 3,016,125 9 11.0 87.2 1,567
256 2,948,439 16 8.7 105.6 1,760
512 2,738,137 29 10.5 106.1 1,701
768 1,977,414 31 12.6 557.6 3,835
1024 1,608,287 34 12.0 94.0 2,166
1280 1,455,189 38 11.0 155.3 3,173
1518 1,318,009 41 7.0 88.7 1,613

Figure 7-14 shows the L3 forwarding throughput performance of 4 flows and 4K flows with 1 core
(without hyper-threading). There is an average of 33% performance decrease for 4K flows in
comparison to 4 flows.

41 Test Report

.) Intel/® ONP Server Performance
l n tel Test Report

m 4 flows 4K flows

6,000,000
5,000,000
4,000,000
=1
f=4
(=}
2
L]
2
< 3,000,000
z
a
v
o
[yl
(=9
2,000,000
1,000,000 i
64 72 128 256 512 768 1024 1280 1518

Packet size (bytes)

Figure 7-14. One-VM Throughput (PHY-VM-PHY) with 4 Flows and 4K Flows

Test Report 42

Intel® ONP Server Performance
Test Report

intel)

7.5 Two VM Throughput (PHY-VM-VM-PHY)

Figure 7-15 shows the VM-VM test setup with 2 x 10GbE ports (maximum 20Gbps aggregate
throughput) with packets being forwarded from the first VM to the second VM (total two flows).

Figure 7-15. Two-VM Setup (PHY-VM-VM-PHY)

Note: There are 3 switching operations taking place while packets are being routed through the

system.

This test compares two VM throughput with DPDK-netdev using 1flow per port (total 2 flows) and 2k

flows per port (total 4k flows).

Table 7-22. Configuration variables for OVS with DPDK-netdev

Configuration variables

Physical Cores

Hyper-threaded cores

OVS with DPDK-netdev

1

none

43

Test Report

Figure 7-16 shows packet throughput comparing 2 flows and 4K flows for 1 core running 1 OVS PMD

thread.

Packets/second

m 1 flow/port (2 flows)

3,500,000

3,000,000

2,500,000
2,000,000
1,500,000
1,000,000
500,000 I
_ 64 72 128 256 512 768

m 2K flows/port (4K flows)

Packet size (bytes)

Intel/® ONP Server Performance
Test Report

1024 1280

1518

Figure 7-16. Two-VM Throughput (PHY-VM-VM-PHY) with 2 Flows and 4K Flows

Table 7-23 and Table 7-24 show the data plotted and the latency numbers for each packet size for 1

core running 1 OVS PMD thread.

Table 7-23. VM-to-VM Packet Throughput with 2 Flows

Packet size Aggregate throughput Line Rate Minimum Average Maximum
(Bytes) (packets/sec) % latency (ps) | latency (ps) | latency (ps)

64 2,858,482 9.6 11 72 1,009
72 2,820,089 10.4 12 125 1,288
128 2,830,877 16.8 18 210 1,504
256 2,726,504 30.1 12 144 1,225
512 2,486,700 52.9 15 218 1,454
768 2,046,907 64.5 20 141 1,210
1024 1,751,030 73.1 20 131 984
1280 1,512,187 78.6 24 151 1,147
1518 1,344,186 82.7 23 116 1,062

Test Report

44

Intel® ONP Server Performance

Test Report

Table 7-24. VM-to-VM Packet Throughput with 4K Flows

intel)

Minimum
Packet size Aggregate throughput Line Rate latency Average Maximum
(Bytes) (packets/sec) % (us) latency (ps) latency (ps)

64 1,736,304 5.8 17 191 2,257
72 1,690,405 6.2 15 133 1,139
128 1,687,704 10.0 19 122 920
256 1,640,607 18.1 15 144 1,020
512 1,509,908 32.1 17 121 601
768 1,043,917 32.9 19 242 1,697
1024 903,695 37.7 12 32 1,554
1280 841,002 43.7 19 316 2,291
1518 787,867 48.5 12 275 1,782

Figure 7-17 compares packet throughput of PHY-to-VM case and VM-to-VM test case with 4K flows
(without hyper-threading) for 1 core running 1 OVS PMD thread. There is an additional switching
operation in the VM-to-VM setup for communicating between the two VMs.

Packets/second

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

64 72 128 256 512 768

HPHY-VM BVM-VM

Packet size (bytes)

1024 1280

1518

Figure 7-17. Comparison of throughput with 1 VM and 2 VMs using 4K Flows

45

Test Report

. Intel/® ONP Server Performance
l n tel Test Report

7.6 VXLAN (PHY-OVS-VM-0OVS-PHY)

This test case investigates performance of VXLAN (https://tools.ietf.org/html/rfc7348) using regular
Open vSwitch* and Open vSwitch* with DPDK-netdev. The performance data provides a baseline for
scenarios using VXLAN Tunnel End Points (VTEPs) in the vSwitch and establishes a test methodology
for future comparisons. The test data here cannot be compared directly with other data in this
document because the test setups are not equivalent. Future tests will include realistic use-case
scenarios where traffic passes through VMs. The methodology described here attempts to emulate the
scenario in Figure 7-18. An important difference, however, is that traffic does not pass through a VM
(described below).

Figure 7-18 shows a VXLAN scenario using 2 x 10GbE ports (maximum 20Gbps aggregate throughput
using two flows). VXLAN decapsulation and encapsulation processing occurs in the vSwitch VTEP.

[_port/ Jll \port |

I

I

I

I

I

I

I

|

I

| IPV4 Traffic
-
|
I

|

|

I

I

I

I

I

- Fedorast / . _

Port 2
Port 4

i H I

Figure 7-18. VXLAN Scenario with 2 Physical Ports and VTEP in the vSwitch

Test Report 46

https://tools.ietf.org/html/rfc7348

Intel® ONP Server Performance u
Test Report l n tel

7.6.1 VXLAN Test Methodology

In this test methodology, 2 hosts are used with VTEPs in each host doing both encapsulation and
decapsulation. Figure 7-19 shows the test setup with packet flows between each host using the VXLAN
tunnel and between each host and the Ixia traffic generator.

Each host machine requires 2 x 10GbE network ports:
1. Port 1 (eth0) is used for the VXLAN tunnel connection between the host machines.
2. Port 2 (ethl) is used for IPv4 traffic to and from the Ixia traffic generator.

VXLAN test setup details are provided in section 13, VXLAN Test Setup.

IXIA
Host A Host B

ethl ethl
P et e el
;' br-int | br-int ‘5
i vxlan0] vxlan0
A E. ovs / \ bro ovs |
e | - T — 1 — _______,—‘

eth0 etho

N
VXLAN tunnel packets

Figure 7-19. Test Setup Showing Packet Flows between Hosts and Ixia Traffic Generator

In this setup, 2 identical hosts are used (if hosts are not identical bottlenecks can impact test
measurements). The 2 hosts are connected using 10GbE ports to create a VXLAN tunnel. The following
steps show the flow of packets between Host A and Host B::

1. Ixia generates IPV4 packets.

2. 0OVS in Host A receives the IPv4 packets through ethl.

3. VTEP configured at vxlanO in Host A encapsulates the IPv4 packets.

4. OVS in Host A forwards the VXLAN packets to Host B via the VXLAN tunnel.
5

In Host B, OVS receives the packets at brO and forwards the VXLAN packets to the VTEP
configured at vxlanO.

6. The VXLAN packets are decapsulated into IPv4 packets and OVS sends the packets to the Ixia
via ethl.

7. Step 1 - 6 are repeated for IPv4 traffic from IXIA to Host B and Host B forwards the
encapsulated VXLAN packets to Host A, which would be decapsulated and sent back to IXIA.

47 Test Report

Intel® ONP Server Performance
Test Report

If the flow is unidirectional, Host A would encapsulate the IPv4 packet and Host B decapsulate the
VXLAN packet. This test methodology uses bidirectional flows in order to measure both encapsulation
and decapsulation performance (which occurs in each host).

7.6.2 VXLAN Test Results

VXLAN tests attempt to achieve system throughput of 20Gbps using 2 physical ports and 1 flow per
port in each direction (see Table 7-25). Performance data shows comparisons between:

1. Native OVS and OVS with DPDK-netdev
2. 0OVS with DPDK-netdev when using 1 and 2 physical cores

Table 7-25. Configurations for VXLAN Tests

Configuration Variable
Flows per
TX/RX Port in Hyper-
Queues each Physical Threaded
Test Ports per Core Direction Cores Cores

Native OVS
(encap/decap and L3 Forwarding) 2 1 1 1 NA
OVS with DPDK_-netdev (encap/decap 2 1 1 1,2 NA
and L3 Forwarding)

Figure 7-20 shows VXLAN performance for 64B comparing Native OVS and OVS with DPDK-netdev for
1 core and 2 core configurations. Aggregate throughput and latency data are provided in Table 7-26.

Test Report 48

Intel® ONP Server Performance u :
Test Report l n tel

14,000,000

12,000,000

10,000,000
31x

8,000,000

Packets/second

6,000,000

4,000,000 < 18x

2,000,000

Stock OVS OVS-DPDK 2 cores

OVS-DPDK 1 core

Figure 7-20. VXLAN Performance for 64B Packets Comparing Native OVS and OVS with
DPDK-netdev (1 and 2 Cores)

Table 7-26. Packet Throughput for 64B with Native OVS and OVS with DPDK-netdev

Aggregate i Average Maximum
Test Throughput Line Rate Minimum Latency Latency
Configuration (Packets/sec) % Latency (ps) (ps) (ps)
ovs 412,769 1 42.7 78.8 20,814
OVS with DPDK-
netdev (1 core) 7,347,179 25 10.9 29.6 121
OVS with DPDK-
netdev (2 cores) 12,699,097 43 10.6 16.0 323

Figure 7-21 shows VXLAN performance comparing Native OVS and OVS with DPDK-netdev for 1 core
and 2 core configurations for all packet sizes. Aggregate throughput and latency data are provided in
Table 7-27, Table 7-28, and Table 7-29, respectively.

49 Test Report

Intel® ONP Server Performance

inteD

14,000,000

12,000,000
10,000,000
8,000,000
6,000,000
4,000,000
] 18
| I
7 64 72 128 256 512 768

1024 1280 1468

Packets per seconds

Packet size (bytes)

M Stock OVS ® OVS-DPDK1core m OVS-DPDK 2 cores

Figure 7-21. VXLAN Performance (PHY-VM-PHY) Comparing Native OVS and OVS with
DPDK-netdev (1 and 2 Cores)

Test Report 50

Intel® ONP Server Performance

Test Report

Table 7-27. Packet Throughput using Native OVS

Minimum Average Maximum
Packet size Aggregate Throughput Line Rate Latency Latency Latency
(Bytes) (Packets/sec) % (us) (ps) (ps)
64 412,769 1 42.7 78.8 20,814
72 411,534 1 42.4 79.8 19,944
128 413,938 2 41.6 86.5 21,123
256 432,179 5 39.8 187.4 26,929
512 333,262 7 32.0 66.4 20,488
768 304,744 9 33.6 64.4 19,718
1024 283,277 12 31.9 64.1 19,034
1280 225,635 12 30.7 61.9 20,169
1468 226,368 13 24.9 62.0 19,263
Table 7-28. Packet Throughput using OVS with DPDK-netdev (1 Core)
Minimum Average Maximum
Packet size Aggregate Throughput Line Rate Latency Latency Latency
(Bytes) (Packets/sec) % (us) (ps) (ps)
64 7,347,179 25 10.9 29.6 121.5
72 7,312,547 27 9.0 28.8 118.0
128 7,354,579 44 9.1 40.3 209.0
256 7,332,791 81 10.0 44.6 226.6
512 4,294,903 91 11.5 18.4 59.8
768 2,982,420 94 11.8 15.5 53.1
1024 2,283,510 95 11.9 14.4 50.1
1280 1,850,568 96 11.6 14.4 122.9
1468 1,624,881 97 11.3 14.2 79.0
Table 7-29. Packet Throughput using OVS with DPDK-netdev (2 Cores)
Minimum Average Maximum
Packet size Aggregate Throughput Line Rate Latency Latency Latency
(Bytes) (Packets/sec) % (us) (ps) (ps)
64 12,699,097 43 10.6 15.0 323.0
72 12,829,611 47 10.8 17.4 277.1
128 12,613,178 75 11.9 21.4 99.0
256 7,665,582 85 11.8 16.8 53.0
512 4,294,904 91 11.7 18.6 152.9
768 2,982,420 94 11.9 16.3 68.0
1024 2,283,510 95 11.7 14.8 112.0
1280 1,850,568 96 11.7 14.8 51.1
1468 1,624,881 97 11.4 15.2 120.0

51

Test Report

. Intel® ONP Server Performance
I n tel Test Report

8.0 Industry Benchmarks

8.1 ETSI NFV

The European Telecommunications Standards Institute (ETSI) NFV (Phase II) is developing test
methodologies and test specifications relevant to performance testing. Certain draft specification
documents are available publically here: https://docbox.etsi.org/ISG/NFV/Open/Drafts/. This includes
a “"NFV Pre-Deployment Validation” specification with the following:

1. Test methods for pre-deployment validation:
a. Validating physical DUTs and systems-under-test:
i. Data plane validation
ii. Control plane validation
iii. Management plane validation
b. Impact of virtualization on test methods
c. Considerations on choice of virtualized versus hardware based test appliances
2. Pre-deployment validation of NFV infrastructure
3. Pre-deployment validation of VNFs:
a. VNF life-cycle testing:
i. VNF instantiation testing
ii. VNF termination
b. VNF data plane benchmarking
4. Pre-deployment validation of network services
Reliability & resiliency requirements

6. Security considerations

8.2 IETF

The Benchmark Working Group (BMWG) is one of the longest-running working groups in IETF. This
group was rechartered in 2014 to include benchmarking for virtualized network functions (VNFs) and
their infrastructure.

An active Internet draft, "Considerations for Benchmarking Virtual Network Functions and Their
Infrastructure,” is available here: https://tools.ietf.org/html/draft-ietf-bmwg-virtual-net-00. Many
RFCs referenced originated in the BMWG, including foundational RFC 1242 and RFC 2544:

e RFC 1242 Benchmarking Terminology for Network Interconnection Devices
e RFC 2544 Benchmarking Methodology for Network Interconnect Devices

e RFC 2285 Benchmarking Terminology for LAN Switching Devices

e RFC 2889 Benchmarking Methodology for LAN Switching Devices

Test Report 52

https://docbox.etsi.org/ISG/NFV/Open/Drafts/
https://tools.ietf.org/html/draft-ietf-bmwg-virtual-net-00

Intel® ONP Server Performance u :
Test Report l n tel

RFC 3918 Methodology for IP Multicast Benchmarking
RFC 4737 Packet Reordering Metrics

RFC 5481 Packet Delay Variation Applicability Statement

RFC 6201 Device Reset Characterization

8.3 Open Platform for NFV (OPNFV)

OPNFV is a carrier-grade, integrated, open-source platform to accelerate the introduction of new NFV
products and services. As an open-source project, OPNFV is uniquely positioned to bring together the
work of standards bodies, open-source communities, and commercial suppliers to deliver a de facto
open-source NFV platform for the industry. By integrating components from upstream projects, the

community can conduct performance and use case-based testing to ensure the platform’s suitability
for NFV use cases.

As shown in Figure 8-1, many test projects within OPNFV are concerned with performance.
Base system testing:

¢ Infrastructure verification

e Platform performance benchmarking

e Characterize vSwitch performance for Telco

¢ Find system bottlenecks

e Storage performance benchmarking for NFVI

e Carrier grade requirements

e Controller performance testing

For more information, refer to OPNFV Wiki: https://wiki.opnfv.org/start.

Test Projects

Test infrastructure

ainoniseyu) juawhojdeg pue suoneifsjul snonuijuoy

Figure 8-1. OPNFV Test Infrastructure

53 Test Report

https://wiki.opnfv.org/start

Intel® ONP Server Performance

(lntel) Test Report

vSwitch performance characterization is of particular relevance to this test report. An Internet draft for
benchmarking vSwitches in OPNFV is available here: https://tools.ietf.org/html/draft-vsperf-bmwg-
vswitch-opnfv-00. The draft describes the progress of the OPNFV project on vSwitch performance. This
project intends to build on the current and completed work of the BMWG in IETF. The BMWG has
traditionally conducted laboratory characterization of dedicated physical implementations of Internet-
working functions. This memo begins to describe the additional considerations when vSwitches are
implemented in general-purpose hardware.

Test Report 54

https://tools.ietf.org/html/draft-vsperf-bmwg-vswitch-opnfv-00
https://tools.ietf.org/html/draft-vsperf-bmwg-vswitch-opnfv-00

Intel® ONP Server Performance o
Test Report I n tel

9.0 Performance Tuning

9.1 Tuning Methods

There are a few important tuning methods that can improve throughput performance for PHY-PHY,
PHY-VM, and VM-VM test cases:

e CPU core isolation for OVS-DPDK

e HugePage size 1 GB

e CPU core affinity for ovs-vswitchd and OVS PMD threads
e CPU core affinity for the VM (gemu-kvm)

This section provides some fundamental optimization and tunings for the OVS with DPDK setup. Refer
to https://github.com/openvswitch/ovs/blob/master/INSTALL.DPDK.md#performance-tuning for more
information on tuning-related optimization.

0.2 CPU Core Isolation for OVS-DPDK

While the threads used by OVS are pinned to logical cores on the system, the Linux scheduler can also
run other tasks on those cores. To help prevent additional workloads from running on them, the
isolcpus Linux* kernel parameter can be used to isolate the cores from the general Linux scheduler.
Add the isolcpus Linux* parameter in the Linux boot kernel of the host machine. For example, if the
OVS vswitchd and gemu-kvm process are to run on logical cores 2, 4, and 6, the following should be
added to the kernel parameter list:

isolcpus=2,4,6

9.3 HugePage Size 1 GB

HugePage support is required for the large-memory pool allocation used for packet buffers. By using
HugePage allocations, performance is increased because fewer pages are needed, and therefore less
translation lookaside buffers (TLBs, high-speed translation caches). This reduces the time it takes to
translate a virtual page address to a physical page address. Without HugePages, high TLB miss rates
would occur with the standard 4K page size, slowing performance.

The allocation of HugePages should be done at boot time or as soon as possible after system boot to
prevent memory from being fragmented in physical memory. To reserve HugePages at boot time, a
parameter is passed to the Linux* kernel on the kernel command line. For example, to reserve 16G of
HugePage memory in the form of 16 1G pages, the following options should be passed to the kernel:

default hugepagesz=1G hugepagesz=1G hugepages=16

Note: For 1G HugePages, it is not possible to reserve the HugePage memory after the system has
booted.

After the machine is up and running, mount the huge table file system:
mount -t hugetlbfs -o pagesize=1G none /dev/hugepages

55 Test Report

https://github.com/openvswitch/ovs/blob/master/INSTALL.DPDK.md#performance-tuning

. Intel® ONP Server Performance
I n tel Test Report

9.4 CPU Core Affinity for ovs-vswitchd and OVS
PMD Threads

With PMD multi-threading support, OVS creates one PMD thread for each NUMA node as default. The
PMD thread handles the I/0 of all DPDK interfaces on the same NUMA node. The following command
can be used to configure the multi-threading behavior:

ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=<hex string>
The above command asks for a CPU mask for setting the affinity of PMD threads. A set bit in the
mask means a PMD thread is created and pinned to the corresponding CPU core. Ideally, for
maximum throughput, the PMD thread should not be scheduled out, which temporarily halts its
execution. Therefore, with the CPU core isolation being on the host machine during boot time, the
CPU-isolated cores will be used to set the affinity of the PMD threads. For example, to configure PMD
threads on core 2 and 3 using 'pmd-cpu-mask':

ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=C

Check that the OVS PMD thread is set to the correct CPU1 and ovs-vswitchd threads are set to CPU2
and CPU3 using this command:

top -p ‘pidof ovs-vswitchd® -H -dl

top - 17:31:09 up 2:46, 3 users, load average: 0.40, 0.11, 0.08
Threads: 18 total, 1 running, 17 sleeping, 0 stopped, 0 zombie

%Cpu(s): 8.4 us, 0.0 sy, 0.0 ni, 91.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 32748524 total, 11233304 free, 21292684 used, 222536 buff/cache
KiB Swap: 4194300 total, 4194300 free, 0 used. 11237940 avail Mem
PID USER PR NI VIRT RES SHR S %$CPU SMEM TIME+ COMMAND
2150 root 20 0 3836184 8896 5140 R 99.0 0.0 0:28.55 pmd28
2152 root 20 0 3836184 8896 5140 R 99.0 0.0 0:28.55 pmd29
2041 root 20 0 3836184 8896 5140 s 0.0 0.0 0:13.47 ovs-vswitchd
2042 root 20 0 3836184 8896 5140 s 0.0 0.0 0:00.00 ovs-vswitchd

Note: The PMD threads on a NUMA node are created only if there is at least one DPDK interface
from the NUMA node that has been added to OVS. To understand where most of the time is
spent and whether the caches are effective, these commands can be used:

ovs-appctl dpif-netdev/pmd-stats-clear #To reset statistics
ovs-appctl dpif-netdev/pmd-stats-show

Test Report 56

Intel® ONP Server Performance u
Test Report l n tel

9.5 CPU Core Affinity for the Virtual Machine
(gemu-kvm)

When configuring a PHY-VM test environment, it is important to set the CPU core affinity for the virtual
machine (VM). Depending on the number of cores being assigned to the VM, the CPU core affinity
should be set according to the QEMU threads. For example, to configure a VM with 4 cores, start the
VM on CPU 4-6 (0x70):

taskset 70 gemu-system-x86 64 -m 4096 -smp 4 -cpu host -hda /root/vm-images/vm-
fc2l.img -boot ¢ -enable-kvm -pidfile /tmp/vml.pid -monitor
unix:/tmp/vmlmonitor,server,nowait -name 'FC21-VM1' -net none -no-reboot -object
memory-backend-file, id=mem, size=4096M, mem-path=/dev/hugepages, share=on -numa

node, memdev=mem -mem-prealloc -net none \

-chardev socket, id=charl,path=/usr/local/var/run/openvswitch/vhost-user0 \

-netdev type=vhost-user, id=netl,chardev=charl,vhostforce -device virtio-net-
pci,netdev=netl, mac=00:00:00:00:00:01, csum=0ff, gso=0ff,guest tsod=off,guest tsob=off
,guest ecn=off,mrg rxbuf=off \

-chardev socket, id=char2,path=/usr/local/var/run/openvswitch/vhost-userl \

-netdev type=vhost-user, id=net2,chardev=char2,vhostforce -device virtio-net-
pci,netdev=net2,mac=00:00:00:00:00:02, csum=0ff, gso=0ff,guest tsod=off,guest tsob=off
;guest ecn=off,mrg rxbuf=off

--nographic -vnc :14

Once the VM is running, there will be multiple QEMU threads that are spawned running on the host.
Check the main QEMU thread process ID (PID) to track the spawned threads:
ps -e |grep gemu
2511 pts/3 22:27:53 gemu-system-x86

57 Test Report

. Intel® ONP Server Performance
l n tel Test Report

Use the top command to provide a list of the main and child process QEMU threads. The main QEMU
thread PID 2511 is always active with utilization close to 100% of CPU:

top -p 2511 -H -dl

top - 17:06:42 up 1 day, 3:03, 3 users, load average: 2.00, 2.01, 2.02
Threads: 6 total, 1 running, 5 sleeping, 0 stopped, 0 zombie

%Cpu(s): 16.7 us, 0.0 sy, 0.0 ni, 83.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 32748524 total, 10566116 free, 21308332 used, 874076 buff/cache

KiB Swap: 4194300 total, 4194300 free, 0 used. 11189840 avail Mem

PID USER PR NI VIRT RES SHR S %CPU $%MEM TIME+ COMMAND

2520 root 20 0 4704308 24944 6848 R 99.9 0.1 1339:34 gemu-system-x86
2511 root 20 0 4704308 24944 6848 S 0.0 0.1 0:11.69 gemu-system-x86
2518 root 20 0 4704308 24944 6848 S 0.0 0.1 2:11.77 gemu-system-x86
2519 root 20 0 4704308 24944 6848 S 0.0 0.1 0:11.13 gemu-system-x86
2521 root 20 0 4704308 24944 6848 S 0.0 0.1 7:57.56 gemu-system-x86
2523 root 20 0 4704308 24944 6848 S 0.0 0.1 0:03.76 gemu-system-x86

Then, use htop to check the % CPU usage in runtime for each QEMU child thread and determine the
active QEMU threads:

htop -p 2520,2511,2518,2519,2521,2523

Output:

Figure 9-1. Output from htop showing high CPU usage for active QEMU threads

From the htop output screen, you can view two active QEMU threads that have a high CPU usage. In
this example, PID 2511 and PID 2520 (screen output) are using 100% CPU. We have to set these two
active threads to specific CPU logical cores. We are going to set PID 2511 to CPU4 (0x10), and PID
2520 to CPU 5 (0x20). The other 4 threads (PID: 2518, 2519, 2521, 2523) are going to be set to
CPU6 (0x40).

It is important to assign each active (100% CPU) QEMU thread to separate CPU cores to sustain good
optimal throughput performance. If the active QEMU threads are not core-affinitized, the overall
throughput performance is impacted.

Test Report 58

Intel® ONP Server Performance o
Test Report I n tel

9.6 Troubleshooting Tips for OVS

In the OVS controller, there are a few management tools in ovs-vswitchd that are useful to monitor
the status of ports and OpenFlow activities:

e ovs-vsctl manages the switch through interaction with ovsdb-server.
e ovs-ofctl is @ management utility for OpenFlow.
e ovs-appctl is a utility for managing logging levels.

After creating and configuring the ports, the ovs-vsctl command tool is useful to check the overall
view of the bridges and ports created in the ovsdb-server database:

ovs-vsctl show

7bdd3285-c5db-4944-b963-3ecedf66ladl
Bridge "brO"
Port "br0O"
Interface "br0"
type: internal
Port "dpdkO"
Interface "dpdk0O"
type: dpdk
Port "dpdkl"
Interface "dpdkl"
type: dpdk

59 Test Report

. Intel® ONP Server Performance
I n tel Test Report

The ovs-ofctl command tool is useful to check the OpenFlow flow configuration and port statistics.
To check port information on a particular bridge, such as the port's media access control (MAC)
address and number, ovs-ofctl show <bridge-name> Or ovs-ofctl dump-ports-desc <bridge-
name> provides the following information on all ports:

OFPT_ FEATURES REPLY (xid=0x2): dpid:0000001b2la272e4
n tables:254, n buffers:256
capabilities: FLOW STATS TABLE STATS PORT STATS QUEUE STATS ARP MATCH IP

actions: output enqueue set vlan vid set vlan pcp strip vlan mod dl src mod dl dst
mod nw src mod nw dst mod nw tos mod tp src mod tp dst

1 (dpdk0) : addr:00:1b:21:a2:72:e4

config: 0
state: LINK_DOWN
current: AUTO_NEG

speed: 0 Mbps now, 0 Mbps max
2 (vxlan0): addr:c2:7a:99:d6:01:e2
config: 0
state: 0
speed: 0 Mbps now, 0 Mbps max
LOCAL (br-int): addr:00:1b:21:a2:72:e4

config: 0
state: 0
current: 10MB-FD COPPER

speed: 10 Mbps now, 0 Mbps max
OFPT_GET CONFIG REPLY (xid=0x4): frags=normal miss_ send len=0

When the test is running, you can monitor packets sending and receiving at the ports configured in
OVS by checking the flow and port statistics. For example, if you want to check if the packets are
being received and sent in a flow, ovs-ofctl dump-flows <bridge-name> prints all the configured
flow statistics. The figure below shows the flows configured for sending and receiving exist and are
being used with n_packets equal to non-zero.

/root/ovs/utilities/ovs-ofctl dump-flows br-int

NXST FLOW reply (xid=0x4): cookie=0x0, duration=177593.242s, table=0,
n_packets=1300667542, n bytes=78040052520, idle age=65534, hard age=65534,
ip,in port=2 actions=output:l

Test Report 60

Intel® ONP Server Performance o
Test Report (I n tel

The ovs-ofctl dump-ports <bridge-name> command prints port statistics for RX/TX packets,
packets that are dropped, and packet errors (if they occur). In this example, there are packet errors in
port 1. One of the reasons may be that the packet rate being received at port 1 is too high and
beyond the port’s capacity. The packet sending rate to the port, therefore, needs to be reduced to fix
the packet error. If there is a packet drop in the OVS, check the CPU core affinitization for the QEMU
threads for the PHY-VM test case, and if the HugePage size is set correctly, and the ovs-vswitchd and
OVS PMD threads are running on isolated cores.
/root/ovs/utilities/ovs-ofctl dump-ports br-int
OFPST PORT reply (xid=0x2): 3 ports
port 2: rx pkts=0, bytes=0, drop=0, errs=0, frame=0, over=0, crc=0
tx pkts=8, bytes=648, drop=0, errs=0, coll=0
port 1: rx pkts=578932881, bytes=37051704384, drop=0, errs=176810889, frame=0,
over=0, crc=0
tx pkts=1300667551, bytes=83242723450, drop=0, errs=0, coll=0
port LOCAL: rx pkts=14, bytes=1156, drop=0, errs=0, frame=0, over=0, crc=0
tx pkts=0, bytes=0, drop=0, errs=0, coll=0

To check the Address Resolution Protocol (ARP) cache content, ovs-appctl tnl/arp/show prints the
learned MAC address and IP address.

/root/ovs/utilities/ovs-appctl tnl/arp/show

IP MAC Bridge
2.2.2.1 00:1b:21:a2:72:e5 br0
2.2.2.2 00:1b:21:a2:72:e6 br0

61 Test Report

. Intel® ONP Server Performance
l n tel Test Report

10.0 OVS Test Setup

10.1 Configure the Host Machine

1. Disable the following services:

a. The interruption request (IRQ) balance:
killall irgbalance
systemctl stop irgbalance.service
systemctl disable irgbalance.service
b. Firewall and iptables:
systemctl stop firewalld.service
systemctl disable firewalld.service
systemctl stop iptables.service
C. Security-enhanced Linux (SELinux):
[root@localhost ~]# vi /etc/selinux/config
SELINUX=disabled
d. Address space layout randomization:

echo "# Disable Address Space Layout Randomization (ASLR)" > /etc/ \
sysctl.d/ aslr.conf

echo "kernel.randomize va space=0" >> /etc/sysctl.d/aslr.conf

e. IPv4 forwarding:

echo "# Enable IPv4 Forwarding" > /etc/sysctl.d/ip forward.conf
echo "net.ipv4.ip forward=0" >> /etc/sysctl.d/ip forward.conf

systemctl restart systemd-sysctl.service

cat /proc/sys/kernel/randomize va space

H O FH= FH

cat /proc/sys/net/ipv4/ip forward
0

2. Set the uncore frequency:
rdmsr -p 0 0x620
cle
rdmsr -p 14 0x620
cle
wrmsr -p 0 0x620 Oxlele
wrmsr -p 14 0x620 Oxlele

3. Set the PCI configuration:

setpci -s 00:03.0 184.1
0000000
setpci -s 00:03.2 184.1

Test Report 62

Intel® ONP Server Performance o
Test Report I n tel

0000000

setpci -s 00:03.0 184.1=0x1408

setpci -s 00:03.2 184.1=0x1408
4. Remove the following modules:

rmmod ipmi msghandler

rmmod ipmi si

rmmod ipmi devintf

10.2 Set the Kernel Boot Parameters

1. With hyper-threading enabled, add the following to the kernel boot parameters
/etc/default/grub for 2 sockets:

GRUB_CMDLINE LINUX="rd.lvm.lv=fedora-server/root rd.lvm.lv=fedora-server/swap
default hugepagesz=1G hugepagesz=1G hugepages=16 hugepagesz=2M hugepages=2048
intel iommu=off isolcpus=1-13,15-27,29-41,43-55 rhgb quiet"

2. With hyper-threading disabled, add the following to the kernel boot parameters
/etc/default/grub for 2 sockets:

GRUB_CMDLINE LINUX="rd.lvm.lv=fedora-server/root rd.lvm.lv=fedora-server/swap
default hugepagesz=1G hugepagesz=1G hugepages=16 hugepagesz=2M hugepages=2048
intel iommu=off isolcpus=1-13,15-27 rhgb quiet"

3. Save the file and update the GRUB config file:
grub2-mkconfig -o /boot/grub2/grub.cfg

4. Reboot the host machine and check to make sure 1GB and 2MB HugePage sizes are created.
You should see 16 1GB HugePages and 2048 2MB HugePages:

1ls /sys/devices/system/node/node0/hugepages/hugepages—*

hugepages-1048576kB/ hugepages-2048kB/

cat /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr hugepages
16

cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr hugepages
2048

10.3 Compile DPDK 2.0

1. Go to the DPDK-2.0.0 directory and run the following:
make install T=x86_ 64-ivshmem-linuxapp-gcc
cd x86_ 64-ivshmem-linuxapp-gcc
2. Edit the config file (vim .config) and set the configuration options:

CONFIG RTE BUILD COMBINE LIBS=y
CONFIG RTE LIBRTE VHOST=y
CONFIG_RTE LIBRTE VHOST USER=y

3. Save the config file and run make:

EXTRA CFLAGS="-g -Ofast”

63 Test Report

. Intel® ONP Server Performance
l n tel Test Report

make -310

10.4 Install OVS

Go to the OVS directory and run:

./boot.sh

./configure --with-dpdk=/root/dpdk-2.0.0/x86 64-ivshmem-linuxapp-gcc \
CFLAGS="-0fast —-g”

make 'CFLAGS=-g -Ofast -march=native' -3j10

10.5 Prepare to Start OVS

1. Mount the 1GB HugePage and 2MB HugePage:
mkdir -p /mnt/huge
mkdir -p /mnt/huge 2mb
mount -t hugetlbfs nodev /mnt/huge
mount -t hugetlbfs nodev /mnt/huge 2mb -o pagesize=2MB

2. Check that HugePages are mounted:

mount
nodev on /mnt/huge type hugetlbfs (rw,relatime)
nodev on /mnt/huge 2mb type hugetlbfs (rw,relatime,pagesize=2MB)

3. Remove the following Linux modules and load the modules for OVS:

rmmod ixgbe

rmmod igb uio

rmmod cuse

rmmod fuse

rmmod openvswitch
rmmod uio

rmmod eventfd link
rmmod ioeventfd

rm -rf /dev/vhost-net
modprobe uio

insmod $DPDK BUILD/kmod/igb uio.ko

4. Check the PCI ID for the 10GbE NIC ports:

lspci | grep Ethernet

01:00.0 Ethernet controller: Intel Corporation Ethernet Controller X710 for
10GbE SFP+ (rev 01)

01:00.1 Ethernet controller: Intel Corporation Ethernet Controller X710 for
10GbE SFP+ (rev 01)
02:00.0 Ethernet controller: Intel Corporation Ethernet Controller X710 for
10GbE SFP+ (rev 01)

02:00.1 Ethernet controller: Intel Corporation Ethernet Controller X710 for
10GbE SFP+ (rev 01)

H= oHH= K H = = = = =

Test Report 64

Intel® ONP Server Performance
Test Report

intel)

10.6 Bind 10GbE NIC Ports to the igb_uio Driver

To create a 4-port configuration:

python
python
python
python

H H H FHE

python

Output:

Network

$DPDK_DIR/tools/dpdk nic bind.py
$DPDK_DIR/tools/dpdk nic bind.py
$DPDK_DIR/tools/dpdk nic bind.py
$DPDK_DIR/tools/dpdk nic bind.py
$DPDK_DIR/tools/dpdk nic bind.py

devices using the DPDK-compatible

--bind=igb uio
--bind=igb uio
--bind=igb uio
--bind=igb uio

—status

driver:

0000:01:
0000:01:

0000:02:
0000:02:

Network

00.
00.

00.
00.

o = O

1

'Ethernet Controller
'Ethernet Controller

'Ethernet Controller
'Ethernet Controller

X710
X710

X710
X710

for
for

for

for

devices using the kernel driver:

0000:00:19.0

Active

'Ethernet Connection I217-1LM'

10GbE SFP+' drv=igb uio
10GbE SFP+' drv=igb uio

10GbE SFP+' drv=igb uio
10GbE SFP+' drv=igb uio

01l:
01l:
02:
02:

00.
00.
00.
00.

= O B O

unused=140e
unused=i40e

unused=i40e

unused=i40e

if=enp0s25 drv=el000e unused=igb uio

0000:05:00.0 'I210 Gigabit Network Connection' if=enp5s0 drv=igb unused=igb uio

Other network devices:

<none>

65

Test Report

Intel® ONP Server Performance

(inte') Test Report

10.7 Remove and Terminate Previous-Run OVS
and Prepare

pkill -9 ovs

rm -rf /usr/local/var/run/openvswitch
rm -rf /usr/local/etc/openvswitch/

rm -f /tmp/conf.db

mkdir -p /usr/local/etc/openvswitch

H = H H = K

mkdir -p /usr/local/var/run/openvswitch

10.8 Initialize the New OVS Database

1. Initialize the new OVS database:
export OVS DIR=/root/OVS/ovs
cd $OVS DIR
./ovsdb/ovsdb-tool create /usr/local/etc/openvswitch/conf.db \
./vswitchd/vswitch.ovsschema
2. Start the database server:

./ovsdb/ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \
--remote=db:0Open vSwitch,Open vSwitch,manager options \
--pidfile --detach

3. Initialize the OVS database:

./utilities/ovs-vsctl --no-wait init

10.9 Start OVS-vSwitchd

Start OVS with DPDK portion using 2GB on CPU2 (0x2):
./vswitchd/ovs-vswitchd --dpdk -c 0x2 -n 4 --socket-mem 2048 \

-- unix:/usr/local/var/run/openvswitch/db.sock --pidfile

10.10 Tune OVS-vswitchd

You can check the thread siblings list (when hyper-threading is enabled) with the following:
cat /sys/devices/system/cpu/cpuN/topology/thread siblings list

Based on the core thread siblings, you can set/check the PMD mask so that the multiple logical cores
are on the same physical core.

Test Report 66

Intel® ONP Server Performance o
Test Report I n tel

1 PMD Configuration
Set the default OVS PMD thread usage to CPU2 (0x4):

./ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=4

./ovs-vsctl set Open vSwitch . other config:max-idle=30000

2 PMD Configuration
For 1 physical core, 2 logical cores (2 PMDs) on a system with HT enabled, check the thread siblings:

cat /sys/devices/system/cpu/cpul/topology/thread siblings list
2,30

Then set the pmd-cpu-mask to CPU2 and CPU30 (0x40000004):

./ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=40000004
./ovs-vsctl set Open vSwitch . other config:max-idle=30000

For 2 physical cores and 2 logical cores (2 PMDs) on system HT disabled, set the default OVS PMD
thread usage to CPU2 and CPU3 (0xC):

./ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=C

./ovs-vsctl set Open vSwitch . other config:max-idle=30000

4 PMD Configuration
For 2 physical cores, 2 logical cores (4PMDs) on system with HT enabled, check the thread siblings:

cat /sys/devices/system/cpu/cpu2/topology/thread siblings list
2,30
cat /sys/devices/system/cpu/cpu3/topology/thread siblings list
3,31

Then set the pmd-cpu-mask to CPU2, CPU3, CPU30, and CPU31 (0x C000000C).
./ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask= C000000C
./ovs-vsctl set Open vSwitch . other config:max-idle=30000

For 4 physical cores (4 PMDs) on system HT disabled, set the default OVS PMD thread usage and set
the default OVS PMD thread usage to CPU2, CPU3, CPU4, and CPU5 (0x3C):

./ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=3C
./ovs-vsctl set Open vSwitch . other config:max-idle=30000

67 Test Report

intel)

10.11 Create the Ports

4-Port Configuration

cd /root/ovs
./utilities/ovs-vsctl

./utilities/ovs-vsctl

./utilities/ovs-vsctl

#

#

#

./utilities/ovs-vsctl
#

./utilities/ovs-vsctl
#

./utilities/ovs-vsctl

Intel® ONP Server Performance

add-br br0 -- set bridge br0 datapath type=netdev

add-port br0 dpdk0 --
add-port br0 dpdkl --
add-port br0 dpdk2 --
add-port br0 dpdk3 --

show

10.12 Add the Port Flows

1. Clear current flows:

export OVS DIR=/root/ovs

cd $0VS_DIR

./utilities/ovs-ofctl del-flows br0

2. Add flow:

./utilities/ovs-ofctl add-flow br0 \
in port=1,dl type=0x800,idle timeout=0,action=output:2
./utilities/ovs-ofctl add-flow br0 \
in port=2,dl type=0x800,idle timeout=0,action=output:1l
./utilities/ovs-ofctl add-flow br0 \
in port=3,dl type=0x800,idle timeout=0,action=output:4
./utilities/ovs-ofctl add-flow br0 \
in port=4,dl type=0x800,idle timeout=0,action=output:3
./utilities/ovs-ofctl dump-flows br0

set
set
set

set

Interface
Interface
Interface

Interface

dpdk0
dpdk1
dpdk2
dpdk3

type=dpdk
type=dpdk
type=dpdk
type=dpdk

Test Report

Test Report

68

Intel® ONP Server Performance u
Test Report l n tel

11.0 PHY-VM-PHY Test Setup

Follow the steps on the PHY-to-PHY test setup until section 10.10, Tune OVS-vswitchd, and set up 1
core with 1 PMD thread configuration (without hyper-threading) for the PHY-to-VM tests. Follow the
instructions in this section to continue on the PHY-to-VM.

11.1 Create the Ports

4-Port configuration

cd /root/ovs

./utilities/ovs-vsctl add-br br0O -- set bridge br0 datapath type=netdev

./utilities/ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
./utilities/ovs-vsctl add-port br0O dpdkl -- set Interface dpdkl type=dpdk
./utilities/ovs-vsctl add-port br0 dpdk2 -- set Interface dpdk2 type=dpdk
./utilities/ovs-vsctl add-port br0O dpdk3 -- set Interface dpdk3 type=dpdk
./utilities/ovs-vsctl add-port br0 vhost-user0 \

-- set Interface vhost-user0 type=dpdkvhostuser
./utilities/ovs-vsctl add-port br0 vhost-userl \

-- set Interface vhost-userl type=dpdkvhostuser
./utilities/ovs-vsctl add-port br0 vhost-user2 \

-- set Interface vhost-user?2 type=dpdkvhostuser
./utilities/ovs-vsctl add-port br0 vhost-user3 \

-- set Interface vhost-user3 type=dpdkvhostuser

./utilities/ovs-vsctl show

11.2 Add the Port Flows

export OVS_DIR=/root/ovs
cd $0VS_DIR

1. Clear current flows
./utilities/ovs-ofctl del-flows br0

2. Add Flow

./utilities/ovs-ofctl add-flow br0 \

in port=1,dl type=0x800,idle timeout=0,action=output:5
./utilities/ovs-ofctl add-flow br0 \

in port=2,dl type=0x800,idle timeout=0,action=output:6
./utilities/ovs-ofctl add-flow br0 \

in port=3,dl type=0x800,idle timeout=0,action=output:7
./utilities/ovs-ofctl add-flow br0 \

in port=4,dl type=0x800,idle timeout=0,action=output:8

69 Test Report

. Intel® ONP Server Performance
I n tel Test Report

./utilities/ovs-ofctl add-flows br0 \

in port=5,dl type=0x800,idle timeout=0,action=output:1l
./utilities/ovs-ofctl add-flow br0 \

in port=6,dl type=0x800,idle timeout=0,action=output:2
./utilities/ovs-ofctl add-flow br0 \

in port=7,dl type=0x800,idle timeout=0,action=output:3
./utilities/ovs-ofctl add-flow br0 \

in port=8,dl type=0x800,idle timeout=0,action=output:4
./utilities/ovs-ofctl dump-flows br0

11.3 Power on the VM

Start the VM on CPU 4, CPU 5, and CPU 6 (0x70) with the following configuration:

taskset 70 gemu-system-x86 64 -m 4096 -smp 4 -cpu host -hda /root/vm-images/vm-
fc2l.img -boot ¢ -enable-kvm -pidfile /tmp/vml.pid -monitor

unix:/tmp/vmlmonitor, server,nowait -name 'FC21-VM1' -net none -no-reboot -object
memory-backend-file, id=mem, size=4096M, mem-path=/dev/hugepages, share=on -numa
node, memdev=mem -mem-prealloc \

-chardev socket, id=charl,path=/usr/local/var/run/openvswitch/vhost-user0 \

-netdev type=vhost-user,id=netl, chardev=charl, vhostforce -device virtio-net-
pci,netdev=netl, mac=00:00:00:00:00:01, csum=0ff, gso=off,guest tsod4=off,guest tsob=off
,guest _ecn=off,mrg rxbuf=off \

-chardev socket, id=char2,path=/usr/local/var/run/openvswitch/vhost-userl \

-netdev type=vhost-user,id=net2, chardev=char2, vhostforce -device virtio-net-
pci,netdev=net2,mac=00:00:00:00:00:02, csum=0ff, gso=off,guest tsod4=off,guest tsob=off
,guest_ecn=off,mrg rxbuf=off \

-chardev socket,id=charl,path=/usr/local/var/run/openvswitch/vhost-user0 \

-netdev type=vhost-user,id=netl, chardev=charl, vhostforce -device virtio-net-
pci,netdev=netl, mac=00:00:00:00:00:01, csum=0ff, gso=off,guest tsod4=off,guest tsob=off
,guest_ecn=off,mrg rxbuf=off \

-chardev socket,id=char2,path=/usr/local/var/run/openvswitch/vhost-userl \

-netdev type=vhost-user,id=net2, chardev=char?2, vhostforce -device virtio-net-
pci,netdev=net2,mac=00:00:00:00:00:02, csum=0ff, gso=off,guest tsod4=off,guest tsob=off
,guest_ecn=off,mrg rxbuf=off \

--nographic -vnc :14

11.4 Set the VM Kernel Boot Parameters

1. Add the following to the kernel boot parameters /etc/default/grub:

GRUB_CMDLINE LINUX="rd.lvm.lv=fedora-server/root rd.lvm.lv=fedora-server/swap
default hugepagesz=1G hugepagesz=1G hugepages=1 hugepagesz=2M hugepages=1024
isolcpus=1,2 rhgb quiet"

2. Save the file and update the GRUB config file:
grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot the VM and check to make sure 1GB and 2MB HugePage sizes are created. You should
see one 1GB HugePage and 1024 2MB HugePages:

Test Report 70

Intel® ONP Server Performance u
Test Report l n tel

1ls /sys/devices/system/node/node0/hugepages/hugepages-*

hugepages-1048576kB/ hugepages-2048kB/

cat /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr hugepages
1

cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr hugepages
1024

11.5 Set up the VM HugePages

Mount the HugePage for 1 GB and 2 MB:

mount -t hugetlbfs hugetlbfs /mnt/huge
mount -t hugetlbfs none /mnt/huge 2mb -o pagesize=2MB

11.6 Set up DPDK 2.0

1. Download DPDK 2.0.0 and compile it:

make install T=x86 64-native-linuxapp-gcc

2. Edit the test-pmd apps input and output queue size to 2K for better throughput performance:
vi /root/dpdk-2.0.0/app/test-pmd/test-pmd.c

/*
* Configurable number of RX/TX ring descriptors.
*/

#define RTE TEST RX DESC_DEFAULT 2048
#define RTE TEST TX DESC DEFAULT 2048
3. Save and build the test-pmd app:

export RTE SDK=/root/dpdk-2.0.0
export RTE TARGET=x86 64-native-linuxapp-gcc

make

71 Test Report

intel)

11.7 Set up the vHost Network in the VM

1. Load the UIO kernel module in the VM:

modprobe uio

Intel® ONP Server Performance

insmod /root/dpdk-2.0.0/x86 64-native-linuxapp-gcc/kmod/igb uio.ko
2. Check the PCI ID for the 10GbE NIC ports:

#

00

00

00
[1

lspci -nn

:04.0 Ethernet
[1af4:1000]

:05.0 Ethernet
[1af4:1000]

00:06.0 Ethernet
[1af4:1000]

:07.0 Ethernet

af4:1000]

controller [0200]: Red Hat,
controller [0200]: Red Hat,
controller [0200]: Red Hat,
controller [0200]: Red Hat,

Inc Virtio

Inc Virtio

Inc Virtio

Inc Virtio

3. Bind the user-side vhost network devices with the igb_uio driver:

network device

network device

network device

network device

/root/dpdk-2.0.0/tools/dpdk nic bind.py -b igb uio 00:04.
/root/dpdk-2.0.0/tools/dpdk nic bind.py -b igb uio 00:05.
/root/dpdk-2.0.0/tools/dpdk nic bind.py -b igb uio 00:06.
/root/dpdk-2.0.0/tools/dpdk nic bind.py -b igb uio 00:07.
/root/dpdk-2.0.0/tools/dpdk nic bind.py -status

Network devices using DPDK-compatible driver

0000:00:04.0 'Virtio network device' drv=igb uio
0000:00:05.0 'Virtio network device' drv=igb uio
0000:00:06.0 'Virtio network device' drv=igb uio
0000:00:07.0 'Virtio network device' drv=igb uio

Network devices using kernel driver

<none>

o O O O

unused=virtio pci

unused=virtio pci

unused=virtio pci

unused=virtio pci

Test Report

11.8 Start the test-pmd Application in the VM

1. Run test-pmd app on vCPU1 and vCPU2 (0x6):

cd /root/dpdk-2.0.0/x86 64-native-linuxapp-gcc/build/app/test-pmd

#

./testpmd -c 0x6 -n 4 -- --burst=32 -i --disable-hw-vlan --txd=2048 \
--rxd=2048 --txgflags=0x£f00

2. In the application, enter the fwd and mac_retry commands:

testpmd> set fwd mac retry

3. Setthe mac_ retry packet forwarding mode.

Test Report

72

Intel® ONP Server Performance

Test Report

4. Start the PMD forwarding operation:

testpmd> start

mac_retry packet forwarding - CRC stripping disabled - packets/burst=32

nb
RX
RX
TX
TX
TX

forwarding cores=1 - nb forwarding ports=2

queues=1 - RX desc=2048 - RX free threshold=32
threshold registers: pthresh=8 hthresh=8 wthresh=0
queues=1 - TX desc=2048 - TX free threshold=0
threshold registers: pthresh=32 hthresh=0 wthresh=0
RS bit threshold=0 - TXQ flags=0xf00

11.9 CPU Affinity Tuning

ntel)

The tables below show the host’s CPU core affinity settings for PHY-to-VM test configuration for 1
physical core (no hyper-threading). When the VM starts, there are multiple QEMU threads spawned.
Refer to section 9.1.4, CPU Core Affinity for the Virtual Machine (gemu-kvm), to set the active QEMU
threads to the correct core affinity.

CPU Affinity Setting on the Host

Logical Core

Process

QEMU Threads CPU Affinity

1 ovs-vswitchd
2 PMDO
4,5, 6 QEMU
Logical Core Process CPU% (from htop)

4 QEMU (main thread) 100
5 QEMU 100
6 QEMU 0
6 QEMU 0
6 QEMU 0
6 QEMU 0

Note: Two active threads (with 100% CPU) are set to 2 different logical

cores

73

Test Report

. Intel® ONP Server Performance
l n tel Test Report

12.0 VM-VM Test Setup

Refer to section 11.0, PHY-VM-PHY Test Setup, to set up the host configurations until section 10.10,
Tune OVS-vswitchd, and then set up 1 core with 1 PMD thread configuration (without hyper-
threading) for 2 VMs series tests. Follow the instructions below to continue on the VM-to-VM setup.

12.1 Create the Ports

cd /root/ovs

./utilities/ovs-vsctl show

./utilities/ovs-vsctl add-br br0O -- set bridge br0 datapath type=netdev

./utilities/ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
./utilities/ovs-vsctl add-port br0O dpdkl -- set Interface dpdkl type=dpdk
#

./utilities/ovs-vsctl add-port br0 vhost-user0 \
-- set Interface vhost-user0 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0O vhost-userl \
—-— set Interface vhost-userl type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0O vhost-user2 \
-- set Interface vhost-user2 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0 vhost-user3 \

-- set Interface vhost-user3 type=dpdkvhostuser

./utilities/ovs-vsctl show

12.2 Add the Port Flows

export OVS_DIR=/root/ovs
cd $0VS_DIR

1. Clear current flows
./utilities/ovs-ofctl del-flows br0

2. Add Flow

./utilities/ovs-ofctl add-flow br0 \

in port=1,dl type=0x800,idle timeout=0,action=output:3
./utilities/ovs-ofctl add-flow br0 \

in port=2,dl type=0x800,idle timeout=0,action=output:6
./utilities/ovs-ofctl add-flow br0 \

in port=3,dl type=0x800,idle timeout=0,action=output:1l
./utilities/ovs-ofctl add-flow br0 \

in port=4,dl type=0x800,idle timeout=0,action=output:5
./utilities/ovs-ofctl add-flow br0 \

in port=6,dl type=0x800,idle timeout=0,action=output:2
./utilities/ovs-ofctl add-flow br0 \

in port=5,dl type=0x800,idle timeout=0,action=output:4

Test Report 74

Intel® ONP Server Performance o
Test Report I n tel

./utilities/ovs-ofctl dump-flows br0

12.3 Power on the VM

Start the first VM on CPU 4, CPU 5, and CPU 6 (0x70) with the following configuration:

taskset 70 gemu-system-x86 64 -m 4096 -smp 4 -cpu host -hda /root/vm-images/vm2-
fc2l.img -boot ¢ -enable-kvm -pidfile /tmp/vml.pid -monitor

unix:/tmp/vm2monitor, server,nowait -name 'FC21-VM2' -net none -no-reboot -object
memory-backend-file, id=mem, size=4096M, mem-path=/dev/hugepages, share=on -numa

node, memdev=mem -mem-prealloc \

-chardev socket,id=charl,path=/usr/local/var/run/openvswitch/vhost-user0 \

-netdev type=vhost-user, id=netl,chardev=charl,vhostforce -device virtio-net-
pci,netdev=netl, mac=00:00:00:00:00:01, csum=0ff, gso=off,guest tsod4=off,guest tsob=off
,guest _ecn=off,mrg rxbuf=off \

-chardev socket, id=char2,path=/usr/local/var/run/openvswitch/vhost-userl \

-netdev type=vhost-user,id=net2, chardev=char2, vhostforce -device virtio-net-
pci,netdev=net2,mac=00:00:00:00:00:02, csum=0ff, gso=off,guest tsod4=off,guest tsob=off
,guest _ecn=off,mrg rxbuf=off \

--nographic -vnc :14

12.3.1 VM Kernel Boot Parameters

1. Add the following to the kernel boot parameters /etc/default/grub in the VM:

GRUB_CMDLINE LINUX="rd.lvm.lv=fedora-server/root rd.lvm.lv=fedora-server/swap
default hugepagesz=1G hugepagesz=1G hugepages=1 hugepagesz=2M hugepages=1024
isolcpus=1,2 rhgb quiet"

2. Save the file and update the GRUB config file:
grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot the VM and then check to make sure 1GB and 2MB HugePage sizes are created. You
should see one 1GB HugePages and 1024 2MB HugePages:

1ls /sys/devices/system/node/node0/hugepages/hugepages-*

hugepages-1048576kB/ hugepages-2048kB/

#cat /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_ hugepages
1

#cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr hugepages
1024

4. Start the second VM by making a copy of the first VM. Start the second VM on CPU 7, CPUS8,
and CPU9 (0x380) with the following command:

taskset 380 gemu-system-x86 64 -m 4096 -smp 4 -cpu host -hda /root/vm-
images/vm2-fc2l.img -boot ¢ -enable-kvm -pidfile /tmp/vml.pid -monitor
unix:/tmp/vm2monitor, server,nowait -name 'FC21-VM2' -net none -no-reboot -object
memory-backend-file, id=mem, size=4096M, mem-path=/dev/hugepages, share=on -numa
node, memdev=mem -mem-prealloc \

-chardev socket,id=charl,path=/usr/local/var/run/openvswitch/vhost-user0 \
-netdev type=vhost-user, id=netl,chardev=charl,vhostforce -device virtio-net-
pci,netdev=netl,mac=00:00:00:00:00:01, csum=0ff, gso=0ff,guest tsod=off,guest tsob
=off,guest ecn=off,mrg rxbuf=off \

-chardev socket,id=char2,path=/usr/local/var/run/openvswitch/vhost-userl \

75 Test Report

. Intel® ONP Server Performance
l n tel Test Report

-netdev type=vhost-user, id=net2,chardev=char2,vhostforce -device virtio-net-
pci, netdev=net2,mac=00:00:00:00:00:02, csum=0ff, gso=0ff,guest tsod=off,guest tsob
=off,guest ecn=off,mrg rxbuf=off \

--nographic -vnc :15

12.4 Set up the VM HugePages

Mount the HugePage for 1GB and 2MB:

mount -t hugetlbfs hugetlbfs /mnt/huge
mount -t hugetlbfs none /mnt/huge 2mb -o pagesize=2MB

12.5 Set up DPDK 2.0

1. Download DPDK 2.0.0 and compile it:
make install T=x86 64-native-linuxapp-gcc

2. Edit the test-pmd app input and output queue size to 2K for better throughput performance:
vi /root/dpdk-2.0.0/app/test-pmd/test-pmd.c
/*

* Configurable number of RX/TX ring descriptors.

*/

#define RTE TEST RX DESC DEFAULT 2048
#define RTE TEST TX DESC DEFAULT 2048

3. Save and build the test-pmd app:

export RTE SDK=/root/dpdk-2.0.0
export RTE TARGET=x86 64-native-linuxapp-gcc
make

Test Report 76

Intel® ONP Server Performance u
Test Report l n tel

12.6 Set up the vHost Network in the VM

Load the UIO kernel module in the VM:

modprobe uio
insmod /root/dpdk-2.0.0/x86 64-native-linuxapp-gcc/kmod/igb uio.ko

Check the PCI ID for the 10GbE NIC ports:

lscpi -nn
00:04.0 Ethernet controller [0200]: Red Hat, Inc Virtio network device
[1af4:1000]
00:05.0 Ethernet controller [0200]: Red Hat, Inc Virtio network device
[1af4:1000]

Bind the user side vhost network devices with the igb_uio driver:

/root/dpdk-2.0.0/tools/dpdk nic bind.py -b igb uio 00:04.0
/root/dpdk-2.0.0/tools/dpdk nic bind.py -b igb uio 00:05.0
/root/dpdk-2.0.0/tools/dpdk nic bind.py --status

Network devices using DPDK-compatible driver

0000:00:04.0 'Virtio network device' drv=igb uio unused=virtio pci
0000:00:05.0 'virtio network device' drv=igb uio unused=virtio pci

Network devices using kernel driver

<none>

12.7 Start test-pmd Application in the VM

Run the test-pmd app on vCPU1 and vCPU2 (0x6):

cd /root/dpdk-2.0.0/x86 64-native-linuxapp-gcc/build/app/test-pmd
./testpmd -c 0x6 -n 4 -- --burst=32 -i --txd=2048 --rxd=2048 \
-—-txgflags=0xf00 --disable-hw-vlan

In the application, enter the fwd and mac_retry commands:

testpmd> set fwd mac_retry
Set mac_retry packet forwarding mode

Start the PMD forwarding operation:

testpmd> start

mac_retry packet forwarding - CRC stripping disabled - packets/burst=32
nb forwarding cores=1 - nb forwarding ports=2

RX queues=1 - RX desc=2048 - RX free threshold=32

RX threshold registers: pthresh=8 hthresh=8 wthresh=0

TX queues=1 - TX desc=2048 - TX free threshold=0

TX threshold registers: pthresh=32 hthresh=0 wthresh=0

TX RS bit threshold=0 - TXQ flags=0xf00

77

Test Report

12.8 CPU Affinity Tuning

Intel® ONP Server Performance
Test Report

The tables below show the host’s CPU core affinity settings for VM-to-VM tests configuration for 1
physical core (no hyper-threading). When the two VMs start, there will be multiple QEMU threads
spawned. Refer to section 9.4, CPU Core Affinity for Virtual Machine (gemu-kvm), to set the active
QEMU threads to the correct core affinity.

CPU affinity setting on the host

Logical Core Process
1 ovs-vswitchd
2 PMDO
4,5, 6 QEMU (VM1)
7,8,9 QEMU (VM2)
QEMU threads CPU affinity
VM1 QEMU threads:
Logical Core Process CPU% (from htop)
4 QEMU (main thread for VM1) 100
5 QEMU 100
6 QEMU 0
6 QEMU 0
6 QEMU 0
6 QEMU 0

Note: Two active threads (with 100% CPU) are set to 2 different
logical cores

VM2 QEMU threads:

Logical Core Process CPU% (from htop)
7 QEMU (main thread for VM2) 100
8 QEMU 100
9 QEMU 0
9 QEMU 0
9 QEMU 0
9 QEMU 0

Note: Two active threads (with 100% CPU) are set to 2 different
logical cores

Test Report

78

Intel® ONP Server Performance u
Test Report l n tel

13.0 VXLAN Test Setup

Follow the instructions below to configure VXLAN test setup. Test setup configurations include using
regular Native OVS and OVS with DPDK-netdev.

13.1 Native OVS Setup

To setup and start regular OVS in Host A and Host B, please refer to section 10.1 Configure the Host
Machine and follow the instructions below.

13.1.1 Set the Kernel Boot Parameters

1. With hyper-threading disabled, add the following to the kernel boot parameters
/etc/default/grub for 2 sockets:

GRUB_CMDLINE LINUX="rd.lvm.lv=fedora-server/root rd.lvm.lv=fedora-server/swap
default hugepagesz=1G hugepagesz=1G hugepages=16 hugepagesz=2M hugepages=2048
intel iommu=off isolcpus=2-13,14-27 rhgb quiet"

2. Save the file and update the GRUB config file:
grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot the host machine and check to make sure 1GB and 2MB HugePage sizes are created.
You should see 16 1GB HugePages and 2048 2MB HugePages:
ls /sys/devices/system/node/node0/hugepages/hugepages-*
hugepages-1048576kB/ hugepages-2048kB/
cat /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr hugepages
16
cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr hugepages
2048

13.1.2 Compile and Install OVS

Go to the OVS directory and run:

./boot.sh

./configure

make —-3j10

make install

./configure --with-linux=/lib/modules/3.17.4-301.fc21.x86 64/build \
CFLAGS="-0Ofast —-g"

make 'CFLAGS=-g -Ofast -march=native' -3j10

#
#
#
#

79 Test Report

. Intel® ONP Server Performance
I n tel Test Report

13.1.3 Prepare to Start OVS

1. Mount the 1GB HugePage and 2MB HugePage:
mkdir -p /mnt/huge
mkdir —p /mnt/huge 2mb
mount -t hugetlbfs nodev /mnt/huge
mount -t hugetlbfs nodev /mnt/huge 2mb -o pagesize=2MB

2. Check that HugePages are mounted:

mount
nodev on /mnt/huge type hugetlbfs (rw,relatime)
nodev on /mnt/huge 2mb type hugetlbfs (rw,relatime,pagesize=2MB)

3. Load the modules:
modprobe openvswitch
modprobe i40e
4. Remove and terminate previous-run OVS and prepare:

pkill -9 ovs

rm -rf /usr/local/var/run/openvswitch
rm -rf /usr/local/etc/openvswitch/

rm —-f /tmp/conf.db

mkdir -p /usr/local/etc/openvswitch

H = H H H R

mkdir -p /usr/local/var/run/openvswitch

5. Initialize the new OVS database and start the server:
export OVS DIR=/root/OVS-2.4 perf/ovs
cd $0VS_DIR
./ovsdb/ovsdb-tool create /usr/local/etc/openvswitch/conf.db \
./vswitchd/vswitch.ovsschema
6. Start the database server:

./ovsdb/ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \
--remote=db:0Open vSwitch,Open vSwitch,manager options \
--pidfile -detach

7. Initialize the OVS database:
./utilities/ovs-vsctl --no-wait init
8. Start OVS-vswitchd:

./vswitchd/ovs-vswitchd

Test Report 80

Intel® ONP Server Performance u
Test Report l n tel

13.1.4 Create the Ports and VXLAN VTEP

Host A Configuration
1. Create the VXLAN tunnel between 2 hosts:
./utilities/ovs-vsctl add-br br0
ifconfig br0 2.2.2.1/24

./utilities/ovs-vsctl add-port br0 eth3
./utilities/ovs-appctl ovs/route/add 2.2.2.2/24 br0

2. Create an internal bridge:
./utilities/ovs-vsctl add-br br-int
ifconfig br-int 1.1.1.1/24
./utilities/ovs-vsctl add-port br-int eth2

3. Add VXLAN VTEP:

./utilities/ovs-vsctl add-port br-int vxlanO -- set Interface \
vxlan0 type=vxlan options:remote ip=2.2.2.2 options:key=1000
./utilities/ovs-vsctl show

./utilities/ovs-appctl ovs/route/show
Host B Configuration

1. Create a VXLAN tunnel between the 2 hosts:
./utilities/ovs-vsctl add-br br0
ifconfig br0 2.2.2.2/24
./utilities/ovs-vsctl add-port br0 eth3
./utilities/ovs-appctl ovs/route/add 2.2.2.1/24 br0

2. Create an internal bridge:

./utilities/ovs-vsctl add-br br-int
ifconfig br-int 1.1.1.2/24
./utilities/ovs-vsctl add-port br-int eth2

3. Add VXLAN VTEP:

./utilities/ovs-vsctl add-port br-int vxlan0 -- set Interface vxlan0O \
type=vxlan options:remote ip=2.2.2.1 options:key=1000

./utilities/ovs-vsctl show

./utilities/ovs-appctl ovs/route/show

13.1.5 Add the Port Flows

Host A and Host B Configuration

1. Clear current flows:

cd $0VS_DIR
./utilities/ovs-ofctl del-flows br-int

81 Test Report

Intel® ONP Server Performance

(intel) Test Report

2. Add flow for port 1 (physical) to port 2 (VTEP):

./utilities/ovs-ofctl add-flow br-int \

in port=1,dl type=0x800,idle timeout=0,action=output:2
./utilities/ovs-ofctl add-flow br-int \

in port=2,dl type=0x800,idle timeout=0,action=output:1
./utilities/ovs-ofctl dump-flows br-int

13.2 OVS with DPDK Setup

To set up and start OVS with DPDK in Host A and Host B, refer to section 10.0, OVS Test Setup, and
follow the step-by-step instructions until section 10.9 Start OVS-vSwitchd. Then follow the instructions
below to configure the VXLAN test setup.

13.2.1 Tune OVS-vSwitchd for VXLAN

Once the OVS-vSwitchd is running, we setup the CPU core affinity for the OVS PMD threads to 1 core,
and 2 cores respectively.

One-PMD Configuration
Set the default OVS PMD thread usage to CPU2 (0x4):

./ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=4

./ovs-vsctl set Open vSwitch . other config:max-idle=30000

Two-PMD Configuration

For 2 physical cores and 2 logical cores (2 PMDs) on system HT disabled, set the default OVS PMD
thread usage to CPU2 and CPU3 (0xC):

./ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=C

./ovs-vsctl set Open vSwitch . other config:max-idle=30000

13.2.2 Create the Ports and VXLAN VTEP

Host A Configuration

1. Create the VXLAN tunnel between 2 hosts:

./utilities/ovs-vsctl add-br br0O -- set bridge br0 datapath type=netdev
ifconfig br0 2.2.2.1/24
./utilities/ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk

./utilities/ovs-appctl ovs/route/add 2.2.2.2/24 br0
2. Create an internal bridge:

./utilities/ovs-vsctl add-br br-int -- set bridge br-int datapath type=netdev
ifconfig br-int 1.1.1.1/24

Test Report 82

Intel® ONP Server Performance o
Test Report I n tel

./utilities/ovs-vsctl add-port br-int dpdkl -- set Interface dpdkl type=dpdk

3. Add VXLAN VTEP:

./utilities/ovs-vsctl add-port br-int vxlan0 -- set Interface \
vxlan0 type=vxlan options:remote ip=2.2.2.2 options:key=1000
./utilities/ovs-vsctl show

./utilities/ovs-appctl ovs/route/show

Host B Configuration

1.

Create a VXLAN tunnel between the 2 hosts:

./utilities/ovs-vsctl add-br br0 -- set bridge br0 datapath type=netdev
ifconfig br0 2.2.2.2/24
./utilities/ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk

./utilities/ovs-appctl ovs/route/add 2.2.2.1/24 br0

Create an internal bridge:

./utilities/ovs-vsctl add-br br-int -- set bridge br-int datapath type=netdev
ifconfig br-int 1.1.1.2/24

./utilities/ovs-vsctl add-port br-int dpdkl -- set Interface dpdkl type=dpdk
Add VXLAN VTEP:

./utilities/ovs-vsctl add-port br-int vxlan0 -- set Interface vxlanO \

type=vxlan options:remote ip=2.2.2.1 options:key=1000
./utilities/ovs-vsctl show

./utilities/ovs—-appctl ovs/route/show

13.2.3 Add the Port Flows

Host A and Host B Configuration

1.

Clear current flows:

cd $0VS DIR
./utilities/ovs-ofctl del-flows br-int

Add flow for port 1 (physical) to port 2 (VTEP):
./utilities/ovs-ofctl add-flow br-int \

in port=1,dl type=0x800,idle timeout=0,action=output:2
./utilities/ovs-ofctl add-flow br-int \

in port=2,dl type=0x800,idle timeout=0,action=output:1l
./utilities/ovs-ofctl dump-flows br-int

83

Test Report

Acronyms and Abbreviations

Intel® ONP Server Performance
Test Report

Abbreviation

Description

ARP Address Resolution Protocol

BMWG Benchmark Working Group

CPU Central Processing Unit

DPDK Data Plane Development Kit

DUT Device-Under-Test

EMC Exact Match Cache

ETSI European Telecommunications Standards Institute
GbE Gigabit Ethernet

GRUB GRand Unified Bootloader

IETF Internet Engineering Task Force

IPDV Inter-Packet Delay Variation

IPv4 Internet Protocol version 4

IRQ Interruption Request

ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
KVM Kernel-based Virtual Machine

LAN Local Area Network

MAC Media Access Control

NFV Network Functions Virtualization

NIC Network Interface Card

NUMA Non-Uniform Memory Access

OPNFV Open Platform for NFV

ovs Open vSwitch

PCI Peripheral Component Interconnect
PDV Packet Delay Variation

PHY Physical Layer

PID Process ID

PMD Poll Mode Driver

Test Report

84

Intel® ONP Server Performance

Test Report

Acronyms and Abbreviations (cont’d)

Abbreviation

Description

QEMU Quick Emulator

RFC Request for Comments

SDN Software-Defined Networking
SELinux Security-Enhanced Linux

SLA Service-Level Agreement
TLB Translation Lookaside Buffer
vhost Virtual Host

VM Virtual Machine

VNF Virtualized Network Function
VTEP VXLAN Tunnel End Point
VXLAN Virtual eXtensible LAN

85

Test Report

Intel® ONP Server Performance

inteD

Legal Information

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request. Contact
your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system
manufacturer or retailer. Tests document performance of components on a particular test, in specific systems.
Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about
performance and benchmark results, visit http://www.intel.com/performance.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are
subject to change without notice. Results have been estimated or simulated using internal Intel analysis or
architecture simulation or modeling, and provided to you for informational purposes. Any differences in your
system hardware, software or configuration may affect your actual performance.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems
or any damages resulting from such losses.

Intel does not control or audit third-party web sites referenced in this document. You should visit the referenced
web site and confirm whether referenced data are accurate.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights that relate to the presented subject matter. The furnishing of documents and other materials and
information does not provide any license, express or implied, by estoppel or otherwise, to any such patents,
trademarks, copyrights, or other intellectual property rights.

2015 Intel® Corporation. All rights reserved. Intel, the Intel logo, Core, Xeon, and others are trademarks of Intel
Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others.

Test Report 86

http://www.intel.com/performance

