IBM TPM 2.0

Ken Goldman

IBM Research

kgoldman@us.ibm.com
November 18, 2016
31.
Introduction

42.
Acknowledgements

53.
Build

53.1.
Linux

53.2.
Windows

63.2.1.
Windows MinGW

63.2.2.
Windows Visual Studio

63.2.3.
Windows Visual Studio Configuration

84.
Running the TPM

95.
Status

95.1.
Bugs

1. Introduction
This is an open source implementation of the Trusted Computing Group's TPM 2.0 library specification.
It is current to revision 138. Revision 138 is not yet published, but I believe that it will become the next published standard.
I have tested on several platforms and OSes, including:

· x86 Windows 7

· x86 Linux (RHEL and Fedora)

· ARM Linux (Raspberry Pi)

· IBM System Z (mainframe) Linux

I expect that it will work on any Windows or POSIX little endian platform. While there are ifdefs for a big endian platform, this has not been tested. The issue is that the code uses C structure bit fields, which are known to be not portable.

The interface is a socket with the same packet format as in the Microsoft simulator. The TPM specification Part 4 describes the format for those who are interested. The IBM TSS at https://sourceforge.net/projects/ibmtpm20tss integrates directly with this TPM.
Internally, we have a simulated Linux /dev/tpm0 interface. Is there interest in that?
2. Acknowledgements
I extracted much of the software for this TPM from the TPM 2.0 library specification Parts 3 and 4. I would like to acknowledge the generosity of Microsoft for contributing that code under a license that permits this open source implementation.
3. Build
The IBM TPM ships with these directories:

…/src

TPM source
…/tpmvstudio

TPM Visual Studio project
To extract the tarball

> cd …

> tar xvf ibmtpmnnn.tar .

The builds for Linux and Windows create an executable called "tpm_server" or "tpm_server.exe".

Prerequisites:

· OpenSSL 1.0.x
Install OpenSSL 1.0.x, not 1.1.x, which is a major API departure from previous versions.

Compiler options:

·
· TPM_POSIX

on POSIX compliant OSes, or

· TPM_WINDOWS

on Windows OSes

·
3.1. Linux Build
> cd …/src
> make
3.2. Windows Build
Install OpenSSL 1.0.x, not 1.1.x, which is a major API departure from previous versions.
The usual place to get OpenSSL binaries for Windows is:
http://slproweb.com/products/Win32OpenSSL.html
Install Win32 OpenSSL, not the "Light" versions, which I believe do not contain the development files.

If you chose not to install OpenSSL in the default location, you must fix the build paths. (In other words, use the default location.)

3.2.1. Windows MinGW Build
A mingw (Minimalist GNU for Windows) makefile.mak is included. This permits a command line build, similar to the Linux build. It is compatible with the Eclipse build and debug tools. MinGW is at:

https://sourceforge.net/projects/mingw/files/
> cd …\src
> make -f makefile.mak
The executable will be in …\src
3.2.2. Windows Visual Studio Build
This permits a GUI based build.

I supply a VS solution and project file for Visual Studio Express 2013. The solution is at

…\tpmdevstudio\tpmserver\tpmserver.sln.
The solution files are not compatible with Visual Studio 2015. The C code itself has no known issues with VS 2015.
The executable will be in either:

…/tpmvstudio/tpm_server/debug
…/tpmvstudio/tpm_server/release
3.2.3. Windows Visual Studio Configuration

For other versions of Visual Studio, these build options may work. They have not been tested.
C/C++ Compiler:

Additional Include Directories:

c:/program files/openssl/include;%(AdditionalIncludeDirectories)
Preprocessor Definitions:
WIN32; TPM_WINDOWS;_CRT_SECURE_NO_WARNINGS
Linker:

Additional Dependencies:

libeay32mdd.lib;ssleay32mdd.lib;ws2_32.lib;%(AdditionalDependencies)
Additional Library Directories:

c:\program files\openssl\lib\vc;%(AdditionalLibraryDirectories)
3.3.

4. Running the TPM
> tpm_server
After starting the server, send a simulated powerup. See the IBM TSS "powerup" sample utility.

To simulate a BIOS, send a TPM2_Startup. See the IBM TSS "startup" sample utility.

The IBM TPM works slightly differently from the Microsoft simulator. Both "manufacture" a base TPM state the first time.

However, the Microsoft build "remanufactures" the TPM each time the TPM is started. The IBM TPM retains NV state. The user can force a remanufacture using the -rm command line argument.
5. Status

The source code is current to the TPM working group draft rev 138.
The TPM runs the IBM TSS regression test
5.1. Bugs
Please report bugs.

[image: image1.png]

[image: image2.png]

[image: image3.png]

Page 9

